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Key Contributions

e Demonstrate the ability of an embedding model to successfully predict assessment results

e Introduce an offline methodology as a proxy for assessing the ability of a model to recommend
nersonalized lesson sequences

Model Representation

e Student = a set of d latent skill levels s & ]R‘i that vary over time

e Lesson module = a vector of skill gains /e Ri and a set of prerequisite skill requirements
7eRY

e Assessment module = a set of skill requirements a € R‘i

e A student can be tested on an assessment module, which has a pass-fail result R € {0,1}. The
likelihood of passing should be high when a student has skill levels that exceed the assessment
requirements, and vice-versa.

e A student can complete lesson modules to learn over time, though the skill gains ¢ from a lesson
module are modulated by prerequisite knowledge ¢

Model Dynamics

Assessment Results

For student s;, assessment a, and result R,

R ~ Bernoulli(¢(A(s;, @)))

where ¢ is the logistic function and

Student Learning from Lessons

For student s who worked on a lesson with skill gains ¢ and prerequisites ¢ at time ¢+ 1, the updated
student state is

St ~ N (5 + 7 9(A, @), D)

where the covariance matrix is 2 = [ ;07

Parameter Estimation

We compute MAP estimates of model parameters © by maximizing the following objective function:

L(©) =) log (P[R| §,d, Vs va]) + > _log (P[Si1 | 5,4, q]) — B+ A(©)
A L
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Experiments on Online Course Data

Model Book A Book B
; g v  Test Validation Test Validation
1 N N N 0673 0.614+0.015 0.614 0.644 4+ 0.015
2 N N Y 0818 0.753+0.020 0.788 0.821 +0.021
3 Y N N 0692 0.62440.019 0.630 0.6624+0.023
4 Y N Y 0798 0.761+£0.016 0.775 0.808 = 0.020
5 Y Y N 0724 0.625+£0.021 0.629 0.643+0.018
6 Y Y Y 0811 0.756+0.018 0.785 0.823 £+ 0.021
I 1PL IRT 0812 0.761 =0.016 0.778 0.8124+0.019
8 2PL IRT 0.780 0.708 =0.011 0.686 0.690 = 0.022
0 2D MIRT 0.817 0.732=+=0.012 0.776 0.796 = 0.018
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Full paper and code available at http://siddharth.io/lentil
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