Learning Representations of Student Knowledge and Educational Content

Siddharth Reddv^{1,2}

Igor Labutov³ Thorsten Joachims¹

¹Department of Computer Science Cornell University Ithaca, NY, USA

> ²Knewton, Inc. New York, NY, USA

³Department of Electrical and Computer Engineering Cornell University Ithaca, NY, USA

Machine Learning for Education Workshop, ICML 2015

Motivation

How can we guide students through large, heterogeneous collections of educational content to help them achieve their goals?

- Content = lessons and assessments
- Goal = passing an assessment
- Guide = recommending personalized lesson sequences

Motivation

Motivation

How can we guide students through large, heterogeneous collections of educational content to help them achieve their goals?

- Content = lessons and assessments
- Goal = passing an assessment
- Guide = recommending personalized lesson sequences

General Approach

- 1. Alice completed Lesson B
- 2. Alice passed Assessment C
- 3. Alice failed Assessment D
- 4. Alice completed Lesson E
- 5. Alice passed Assessment D

- 1. Bob completed Lesson B
- 2. Bob failed Assessment C
- 3. Bob failed Assessment D
- 4. Bob completed Lesson E
- 5. Bob passed Assessment C

Related Work

Related Work

Existing frameworks:

- Bayesian Knowledge Tracing (BKT)
- ▶ Item Response Theory (IRT)
- Sparse Factor Analysis (SPARFA)

	knowledge tracing	lesson effects	evaluations
DKT	RNN	-	outcome prediction
T-SKIRT	input-output HMM	-	outcome prediction
SPARFA-Trace	input-output HMM	skill gains	outcome prediction
Embodding	input output HMM	skill gains,	outcome prediction,
Lungading		prereqs	lesson recommendation

Formulation

Student and Content Representations

- Student = a set of latent skill levels that vary over time
- Lesson module = a vector of skill gains, and a set of prerequisite skill requirements
- Assessment module = a set of skill requirements
- A student can be tested on an assessment module, which has a pass-fail result. The likelihood of passing should be high when a student has skill levels that exceed the assessment requirements, and vice-versa.
- A student can complete lesson modules to learn over time, though the skill gains from a lesson module are modulated by prerequisite knowledge

Student and Content Representations

- **Student** = a set of latent skill levels that vary over time
- Lesson module = a vector of skill gains, and a set of prerequisite skill requirements
- Assessment module = a set of skill requirements
- A student can be tested on an assessment module, which has a **pass-fail result**. The likelihood of passing should be high when a student has skill levels that exceed the assessment requirements, and vice-versa.
- A student can complete lesson modules to learn over time, though the skill gains from a lesson module are modulated by prerequisite knowledge

Formulation

Modeling Assessment Outcomes

For student $\vec{s}_t \in \mathbb{R}^d$, assessment $\vec{a} \in \mathbb{R}^d$, and result $R \in \{0, 1\}$,

 $R \sim \text{Bernoulli}(\phi(\Delta(\vec{s_t}, \vec{a})))$

where ϕ is the logistic function and $\Delta(\vec{s_t}, \vec{a}) = \frac{\vec{s_t} \cdot \vec{a}}{||\vec{a}||} - ||\vec{a}|| + \gamma_s + \gamma_a$

Formulation

Modeling Student Learning from Lessons

For student $\vec{s}_t \in \mathbb{R}^d$ who worked on ^S a lesson with skill gains $\vec{\ell} \in \mathbb{R}^d_+$ and no prerequisites at time t + 1, the updated student state is

 $ec{s_{t+1}} \sim \mathcal{N}\left(ec{s_t} + ec{\ell}, \Sigma
ight)$

where the covariance matrix $\Sigma = I_d \sigma^2$ is diagonal. For a lesson ^{Ski} with prerequisites $\vec{q} \in \mathbb{R}^d$,

$$ec{s_{t+1}} \sim \mathcal{N}\left(ec{s_t} + ec{\ell} \cdot \phi(\Delta(ec{s_t}, ec{q})), \Sigma
ight)$$

where $\Delta(ec{s_t},ec{q}) = rac{ec{s_t}\cdotec{q}}{||ec{q}||} - ||ec{q}||$

One-Dimensional Embedding

Two-Dimensional Embedding

Examples

Embedding with Lessons

Reddy, Labutov, Joachims

Learning Representations of Student Knowledge and Educational Content

Embedding with Lesson Prerequisites

Data

Online Course Data

The two data sets from Knewton collectively contain

- 2,184,352 interaction logs
- 1,939 classrooms
- 6 months
- 7,034 students
- 7,217 lessons
- 7,287 assessments
- Average assessment pass rates of 0.712 and 0.693

Parameter Estimation

We compute MAP estimates of model parameters Θ by maximizing

$$L(\Theta) = \sum_{\mathcal{A}} \log \left(\Pr(R \mid \vec{s}_t, \vec{a}, \gamma_s, \gamma_a) \right) \\ + \sum_{\mathcal{L}} \log \left(\Pr(\vec{s}_{t+1} \mid \vec{s}_t, \vec{\ell}, \vec{q}) \right) - \beta \cdot \lambda(\Theta)$$

where \mathcal{A} is the set of assessment interactions, \mathcal{L} is the set of lesson interactions, $\lambda(\Theta)$ is a regularization term that penalizes the L_2 norms of embedding parameters (not bias terms γ), and β is a regularization parameter.

Solved with L-BFGS-B and random parameter initializations

- Hold out assessment interactions at the end of student histories
- Area under ROC Curve (AUC)
- Ten-fold cross-validation

	d	5	а	ℓ	q	γ	Training	Validation
1	1	Υ	Ν	Ν	Ν	Ν	0.723	0.686
2	1	Ν	Υ	Ν	Ν	Ν	0.715	0.661
3	2	Υ	Υ	Ν	Ν	Ν	0.991	0.614
4	2	Υ	Υ	Ν	Ν	Y	0.992	0.726
5	2	Y	Y	Y	Ν	Ν	0.897	0.696
6	2	Y	Y	Y	Ν	Y	0.871	0.748
7	2	Υ	Υ	Y	Υ	Ν	0.898	0.694
8	2	Y	Y	Y	Y	Y	0.882	0.749

Joint embedding beats baselines

Including lesson embeddings improves performance significantly

- Including prerequisite embeddings has a statistically insignificant effect on performance
- Including bias terms improves performance significantly

Reddy, Labutov, Joachims

Learning Representations of Student Knowledge and Educational Content

	d	5	а	$\boldsymbol{\ell}$	q	γ	Training	Validation
1	1	Υ	Ν	Ν	Ν	Ν	0.723	0.686
2	1	Ν	Y	Ν	Ν	Ν	0.715	0.661
3	2	Υ	Y	Ν	Ν	Ν	0.991	0.614
4	2	Y	Y	Ν	Ν	Y	0.992	0.726
5	2	Y	Y	Υ	Ν	Ν	0.897	0.696
6	2	Y	Y	Υ	Ν	Y	0.871	0.748
7	2	Υ	Y	Υ	Υ	Ν	0.898	0.694
8	2	Υ	Y	Y	Y	Y	0.882	0.749

Joint embedding beats baselines

Including lesson embeddings improves performance significantly

- Including prerequisite embeddings has a statistically insignificant effect on performance
- Including bias terms improves performance significantly

	d	5	а	ℓ	q	γ	Training	Validation
1	1	Υ	Ν	Ν	Ν	Ν	0.723	0.686
2	1	Ν	Y	Ν	Ν	Ν	0.715	0.661
3	2	Υ	Y	Ν	Ν	Ν	0.991	0.614
4	2	Υ	Y	Ν	Ν	Y	0.992	0.726
5	2	Y	Y	Y	Ν	Ν	0.897	0.696
6	2	Y	Y	Y	Ν	Y	0.871	0.748
7	2	Υ	Y	Y	Y	Ν	0.898	0.694
8	2	Υ	Y	Υ	Y	Υ	0.882	0.749

- Joint embedding beats baselines
- Including lesson embeddings improves performance significantly
- Including prerequisite embeddings has a statistically insignificant effect on performance
- Including bias terms improves performance significantly

	d	5	а	ℓ	q	γ	Training	Validation
1	1	Υ	Ν	Ν	Ν	Ν	0.723	0.686
2	1	Ν	Y	Ν	Ν	Ν	0.715	0.661
3	2	Υ	Y	Ν	Ν	Ν	0.991	0.614
4	2	Y	Y	Ν	Ν	Y	0.992	0.726
5	2	Y	Y	Y	Ν	Ν	0.897	0.696
6	2	Y	Y	Y	Ν	Y	0.871	0.748
7	2	Y	Y	Y	Υ	Ν	0.898	0.694
8	2	Υ	Υ	Υ	Υ	Y	0.882	0.749

- Joint embedding beats baselines
- Including lesson embeddings improves performance significantly
- Including prerequisite embeddings has a statistically insignificant effect on performance
- Including bias terms improves performance significantly

Expected relative gain from taking recommended path

$$\mathbb{E}\left[rac{\mathbb{E}[R']-\mathbb{E}[R]}{\mathbb{E}[R]}
ight]$$

where R' is the outcome at the end of the recommended path and R is the outcome at the end of the other path

Propensity score matching

- Student features = past outcomes
- Logistic regression for propensity score estimation
- Nearest neighbor matching

Expected relative gain from taking recommended path

$$\mathbb{E}\left[rac{\mathbb{E}[R']-\mathbb{E}[R]}{\mathbb{E}[R]}
ight]$$

where R' is the outcome at the end of the recommended path and R is the outcome at the end of the other path

- Propensity score matching
 - Student features = past outcomes
 - Logistic regression for propensity score estimation
 - Nearest neighbor matching

۲

Summary

Summary

- Demonstrated the ability of an embedding model to successfully predict assessment results
 - Modeling skill gains from lessons is helpful
 - Modeling prerequisites for lessons is not helpful
- Introduced an offline methodology as a proxy for assessing the ability of a model to recommend personalized lesson sequences
 - Embedding model can distinguish between "good" and "bad" paths in bubble scenarios

Ongoing Work

- Cold Start Problem
 - Impose prior distribution on content embeddings based on content-to-concept map and concept dependency graph made by experts
- Personalized Scheduling
 - Jointly model assessment results, response times, and number of attempts
 - Model the forgetting effect and offline learning between interactions
 - Handle wall-clock time constraints on recommended sequences
- Content Analytics
 - Small-scale Mechanical Turk experiments for teaching basic programming
 - Measure lesson quality

Contact

- ► Email: sgr45@cornell.edu
- ▶ Paper, Slides, Poster, Software: http://siddharth.io

