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Overview Motivation

Motivation

How can we guide students through large, heterogeneous collections of
educational content to help them achieve their goals?

I Content = lessons and assessments

I Goal = passing an assessment

I Guide = recommending personalized lesson sequences
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Overview General Approach

General Approach

1. Alice completed Lesson B

2. Alice passed Assessment C

3. Alice failed Assessment D

4. Alice completed Lesson E

5. Alice passed Assessment D

6. ...

1. Bob completed Lesson B

2. Bob failed Assessment C

3. Bob failed Assessment D

4. Bob completed Lesson E

5. Bob passed Assessment C

6. ...

…"
lessons"

assessment"outcomes"

student"

.me"
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Overview Related Work

Related Work

Existing frameworks:

I Bayesian Knowledge Tracing (BKT)

I Item Response Theory (IRT)

I Sparse Factor Analysis (SPARFA)

knowledge tracing lesson effects evaluations
DKT RNN - outcome prediction

T-SKIRT input-output HMM - outcome prediction
SPARFA-Trace input-output HMM skill gains outcome prediction

Embedding input-output HMM
skill gains,

prereqs
outcome prediction,

lesson recommendation
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Embedding Model Formulation

Student and Content Representations

I Student = a set of latent skill levels that vary over time

I Lesson module = a vector of skill gains, and a set of prerequisite
skill requirements

I Assessment module = a set of skill requirements

I A student can be tested on an assessment module, which has a
pass-fail result. The likelihood of passing should be high when a
student has skill levels that exceed the assessment requirements, and
vice-versa.

I A student can complete lesson modules to learn over time, though the
skill gains from a lesson module are modulated by prerequisite
knowledge
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Embedding Model Formulation

Modeling Assessment Outcomes

For student ~st ∈ Rd , assessment
~a ∈ Rd , and result R ∈ {0, 1},

R ∼ Bernoulli(φ(∆(~st , ~a)))

where φ is the logistic function and
∆(~st , ~a) = ~st ·~a

||~a|| − ||~a||+ γs + γa
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Embedding Model Formulation

Modeling Student Learning from Lessons

For student ~st ∈ Rd who worked on
a lesson with skill gains ~̀ ∈ Rd

+ and
no prerequisites at time t + 1, the
updated student state is

~st+1 ∼ N
(
~st + ~̀,Σ

)
where the covariance matrix
Σ = Idσ

2 is diagonal. For a lesson
with prerequisites ~q ∈ Rd ,

~st+1 ∼ N
(
~st + ~̀ · φ(∆(~st , ~q)),Σ

)
where ∆(~st , ~q) = ~st ·~q

||~q|| − ||~q||

Alice&(t&=&1)&

Alice&(t&=&2)&

Bob&(t&=&1)&

Bob&(t&=&2)&

Skill&2&

Skill&1&

L1&

L1&

Alice&(t&=&1)&

Alice&(t&=&2)&

Bob&(t&=&1)&

Bob&(t&=&2)&

Skill&2&

Skill&1&

L1&

L1&

Prereq&of&L1&
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Embedding Model Examples

One-Dimensional Embedding

Alice&(t&=&1)&
Fails&A1&

Alice&(t&=&2)&
Reads&L1,&&
then&Passes&A1&

A1&

Skill&1&

Skill&2&

=&student& =&assessment& =&lesson&

L1&
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Embedding Model Examples

Two-Dimensional Embedding

Evan&
Passes&A2,&fails&A1&

Fogell&
Fails&A1&and&A2&

McLovin&
Passes&A1&and&A2&

A2&

A1&
Skill&1&

Skill&2&

Seth&
Passes&A1,&fails&A2&
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Embedding Model Examples

Embedding with Lessons

Fogell&

McLovin&

A2&

A1&
Skill&1&

Skill&2&

Seth&

Evan&

Slater&(t&=&1)&
Passes&A2,&fails&A1&

Slater&(t&=&2)&
Reads&L1,&then&Passes&A1&and&A2&

Michaels&(t&=&1)&
Passes&A1,&fails&A2&

Michaels&(t&=&2)&
Reads&L2,&&
then&Passes&A1&and&A2&

L1&

L2&

=&student& =&assessment& =&lesson&
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Embedding Model Examples

Embedding with Lesson Prerequisites

Fogell&

A2&

A1&
Skill&1&

Skill&2&

Seth&

Evan&

McLovin&(t&=&1)&
Passes&A1&and&A2,&Fails&A3&

A3&
McLovin&(t&=&2)&
Reads&L1,&then&Passes&A3&

Prereq&of&L1&

L1&
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Experiments Data

Online Course Data

The two data sets from Knewton collectively contain

I 2,184,352 interaction logs

I 1,939 classrooms

I 6 months

I 7,034 students

I 7,217 lessons

I 7,287 assessments

I Average assessment pass rates of 0.712 and 0.693
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Experiments Parameter Estimation

Parameter Estimation

I We compute MAP estimates of model parameters Θ by maximizing

L(Θ) =
∑
A

log (Pr(R | ~st , ~a, γs , γa))

+
∑
L

log (Pr(~st+1 | ~st , ~̀, ~q))− β · λ(Θ)

where A is the set of assessment interactions, L is the set of lesson
interactions, λ(Θ) is a regularization term that penalizes the L2
norms of embedding parameters (not bias terms γ), and β is a
regularization parameter.

I Solved with L-BFGS-B and random parameter initializations
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Experiments Assessment Result Prediction

Assessment Result Prediction

I Hold out assessment interactions at the end of student histories

I Area under ROC Curve (AUC)

I Ten-fold cross-validation
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Experiments Assessment Result Prediction

Assessment Result Prediction

d s a ` q γ Training Validation

1 1 Y N N N N 0.723 0.686

2 1 N Y N N N 0.715 0.661

3 2 Y Y N N N 0.991 0.614

4 2 Y Y N N Y 0.992 0.726

5 2 Y Y Y N N 0.897 0.696

6 2 Y Y Y N Y 0.871 0.748

7 2 Y Y Y Y N 0.898 0.694

8 2 Y Y Y Y Y 0.882 0.749

I Joint embedding beats baselines
I Including lesson embeddings improves performance significantly
I Including prerequisite embeddings has a statistically insignificant

effect on performance
I Including bias terms improves performance significantly
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Experiments Lesson Sequence Discrimination

Lesson Sequence Discrimination
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Experiments Lesson Sequence Discrimination

Lesson Sequence Discrimination

I Expected relative gain from taking recommended path

E
[
E[R ′]− E[R]

E[R]

]
where R ′ is the outcome at the end of the recommended path and R
is the outcome at the end of the other path

I Propensity score matching
I Student features = past outcomes
I Logistic regression for propensity score estimation
I Nearest neighbor matching
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Experiments Lesson Sequence Discrimination

Lesson Sequence Discrimination
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Conclusions Summary

Summary

I Demonstrated the ability of an embedding model to successfully
predict assessment results

I Modeling skill gains from lessons is helpful
I Modeling prerequisites for lessons is not helpful

I Introduced an offline methodology as a proxy for assessing the ability
of a model to recommend personalized lesson sequences

I Embedding model can distinguish between “good” and “bad” paths in
bubble scenarios
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Conclusions Ongoing Work

Ongoing Work

I Cold Start Problem
I Impose prior distribution on content embeddings based on

content-to-concept map and concept dependency graph made by
experts

I Personalized Scheduling
I Jointly model assessment results, response times, and number of

attempts
I Model the forgetting effect and offline learning between interactions
I Handle wall-clock time constraints on recommended sequences

I Content Analytics
I Small-scale Mechanical Turk experiments for teaching basic

programming
I Measure lesson quality
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Conclusions Contact

Contact

I Email: sgr45@cornell.edu

I Paper, Slides, Poster, Software: http://siddharth.io
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