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Abstract
Flashcards are a popular study tool for exploiting the
spacing effect – the phenomenon in which periodic,
spaced review of educational content improves long-term
retention. The Leitner system is a simple heuristic
algorithm for scheduling reviews such that forgotten items
are reviewed more frequently than recalled items. We
propose a formalization of the Leitner system as a
queueing network model, and formulate optimal review
scheduling as a throughput-maximization problem.
Through simulations and theoretical analysis, we find that
the Leitner Queue Network (LQN) model has desirable
properties and gives insight into general principles for
spaced repetition.
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Introduction
The ability to retain a large number of new ideas in
memory is an essential component of human learning. In
recent times, there has been a growing body of work that
attempts to ‘engineer’ this process – creating tools that
enhance the learning process by building on the scientific
understanding of human memory. Flashcards are one such
tool that use the idea of spaced repetition to overcome
the human ‘forgetting curve’. Though they have been



around for a while in the physical form, a new generation
of spaced repetition software such as SuperMemo [9],
Anki [4], and Mnemosyne [1] allow a much greater degree
of control and monitoring of the process. As these
software applications grow popular, there is a need for
formal models for reasoning about and optimizing their
operations. In this work, we use ideas from queueing
theory to develop such a formal model for one of the
simplest and most popular spaced repetition systems: the
Leitner system.

Related Work
The exponential forgetting curve, which was first studied
by Ebbinghaus in 1885 [3], models the probability of
recalling an item as a function of the time elapsed since
previous review and memory ‘strength’. The exact nature
of how strength evolves as a function of the number of
reviews, length of review intervals, etc. is not clear,
though a general spacing effect in which spaced reviews
lead to greater strength than massed reviews (cramming)
has been observed [2]. Recent studies have proposed more
sophisticated probabilistic models of learning and
forgetting [8, 6]. In our queueing model, we assume the
exponential forgetting curve and a simple model of
memory strength.

Novikoff et al. have proposed a theoretical framework for
spaced repetition [7] that assumes strict spacing
constraints and considers items to be identical. They
propose deterministic algorithms for satisfying different
spacing constraints, and examine the rate at which new
items can be presented to different types of students using
these algorithms. We improve upon their ideas by posing
the throughput-maximization problem as an optimization
problem that incorporates the user’s review frequency
budget and non-identical item difficulties.

Memory Model
The probability of a student recalling an item is as follows.

P[recall] = exp (−θ · d/s)

where θ is the item difficulty, d is time elapsed since
previous review, and s is memory strength. In the
queueing model, we will assume that memory strength s is
equal to the position of the deck that the item is currently
in. We have performed preliminary experiments on
large-scale log data from the popular Mnemosyne spaced
repetition software that validate this probabilistic model of
memory.

Queueing Network Model
Leitner System
The Leitner system is a heuristic for prioritizing items for
review. After the user sees an item for the first time, it
enters the system at deck 1. Each deck is a
first-in-first-out queue, and when the user requests an
item to review, the system randomly chooses a deck i,
and shows the user the item at the top of deck i. If the
user forgets the item, it is added to the bottom of deck
i− 1. If the user recalls the item, it is added to the
bottom of deck i+ 1. The key idea is that when the
system randomly chooses a deck, it places more weight on
lower decks than higher decks, so the user spends more
time working on new and difficult items, and less time on
items that are almost mastered. A user might work on
items from deck 1 every day, deck 2 every other day, deck
3 every week, deck 4 every month, etc. One of our main
contributions is a principled method for selecting deck
review frequencies to maximize the rate at which items
are mastered while respecting the user’s review budget.



Leitner Queue Network
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Figure 1: A diagram depicting the routing of items between
queues in the network model (where the number of queues is
n = 5). Green arrows indicate transitions that occur when an
item is recalled, and red arrows indicate transitions for
forgotten items.

Consider a network of n inter-connected M/M/1 queues
[5], as in Figure 1. New items arrive into deck 1 according
to a Poisson process with rate λext. The routing
probability matrix is P , where Pij = P[recall | s = i, ·]
when i < n ∧ j = i+ 1, Pij = 1− P[recall | s = i, ·] when
(i > 1 ∧ j = i− 1) ∨ i = j = 1, and Pij = 0 otherwise.

Items exit the system from deck n with probability
P[recall | s = n, ·]. The service rate for deck i is indicated
by µi, and the user’s work rate budget (e.g., the
maximum number of items the user can review per day) is
given by U . This network of queues is a Jackson network,
and can be treated as a continuous-time Markov chain.
Thus, we can characterize the steady state of the system
using flow-balance equations and queue length stability

conditions. We are interested in finding µi that maximize
the steady-state throughput of the system such that the

budget constraint
n∑
i=1

µi ≤ U is satisfied. Formally, we

must solve the following static planning problem.

maximize λext

subject to
n∑
i=1

µi ≤ U

λext + P11λ1 + P21λ2 = λ1
P12λ1 + P32λ3 = λ2
...
Pn−1,nλn−1 + Pnnλn = λn
µi, λi ≥ 0 ∀i
λi < µi ∀i

We can use an application of Jensen’s inequality and the
closed-form expected delay in a Jackson network to turn
this into a tractable nonlinear optimization problem, and
use a solver (e.g., IP-OPT) to find the optimal deck
review rates µ∗

i . The algorithm for selecting the next item
to present to the user is simple: sample deck i with
probability µi∑n

i=1 µi
, and select the item at the top of the

sampled deck.

The vanilla model assumes a global item difficulty θ. We
can easily extend the model to handle item-specific
difficulties θi by creating parallel copies of the queueing
system for different discretized difficulties, and enforcing
joint budget constraint on the parallel systems.

Experiments
Exploring throughput-optimal review policies, we observe
several intuitive results (e.g., the user should review lower
decks more frequently than higher decks), as well as the



following non-obvious results: (1) expected delay between
consecutive reviews increases as an item moves up
through the system – this is desirable behavior, since there
is support in the experimental psychology literature for
expanding intervals between repetitions [2]; (2) for small
item difficulty, the user should spend a roughly uniform
amount of time on each deck, but for large item difficulty,
the user should spend more time on lower decks than
higher decks; (3) maximum throughput λ∗ext seems to be
a convex function of review budget U , which implies
increasing returns to user effort.

We simulated the queueing system and verified that a
phase transition occurs when the arrival rate of new items
exceeds the maximum throughput predicted by the Leitner
Queue Network model: throughput decreases sharply for
arrival rates greater than the predicted threshold.

Conclusion
We have proposed the first formalization of the Leitner
system, which can be used to help spaced repetition
software developers and users calibrate review schedules
to achieve learning goals under a budget. Simple
topological properties of our queueing network model lead
to desirable properties in review schedules (e.g., expanding
delays between reviews), and the model can be easily
extended to handle realistic scenarios (e.g., non-identical
item difficulties). Jupyter notebooks for running our
experiments – as well as a full paper describing recent
results – are available online at
http://siddharth.io/leitnerq.
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