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Abstract
Students in online courses generate large
amounts of data that can be used to personalize
the learning process and improve quality of ed-
ucation. The goal of this work is to develop a
statistical model of students and educational con-
tent that can be used for a variety of tasks, such
as adaptive lesson sequencing and learning an-
alytics. We formulate this problem as a regu-
larized maximum-likelihood embedding of stu-
dents, lessons, and assessments from historical
student-module interactions. Akin to collabora-
tive filtering for recommender systems, the algo-
rithm does not require students or modules to be
described by features, but it learns a representa-
tion using access traces. An empirical evaluation
on large-scale data from Knewton, an adaptive
learning technology company, shows that this ap-
proach predicts assessment results more accu-
rately than baseline models and is able to dis-
criminate between lesson sequences that lead to
mastery and failure.

1. Introduction
The popularity of online education platforms has soared in
recent years. Companies like Coursera and EdX offer Mas-
sive Open Online Courses (MOOCs) that attract millions
of students and high-calibre instructors. Khan Academy
has become a hugely popular repository of videos and in-
teractive materials on a wide range of subjects. E-learning
products offered by universities and textbook publishers are
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also gaining traction. These platforms improve access to
high quality educational content for anyone connected to
the Internet. As a result, people who would otherwise lack
the opportunity are able to consume materials like video
lectures and problem sets from courses offered at top uni-
versities. However, in these online environments learners
often lack the personalized instruction and coaching that
can potentially lead to significant improvements in educa-
tional outcomes. Furthermore, the educational content may
be contributed by many authors without a formal underly-
ing structure. Intelligent systems that learn about the ed-
ucational properties of the content, guide learners through
custom lesson plans, and quickly adapt through feedback
could help learners take advantage of large and heteroge-
neous collections of educational content to achieve their
goals.

The extensive literature on intelligent tutoring systems
(ITS) and computer-assisted instruction (CAI) dates back
to the 1960s. Early efforts focused on approximating
the behavior of a human tutor through rule-based systems
that taught students South American geography (Carbonell,
1970), electronics troubleshooting (Lesgold et al., 1988),
and programming in Lisp (Corbett & Anderson, 1994). To-
day’s online education platforms differ from early ITSes
in their ability to gather data at scale, which facilitates the
use of machine learning techniques to improve the edu-
cational experience. Relatively little academic work has
been done to design systems that use the massive amounts
of data generated by students in online courses to provide
personalized learning tools. Learning and content analytics
(Lan et al., 2014c), instructional scaffolding in educational
games (ORourke et al., 2015), hint generation (Piech et al.,
2015b), and feedback propagation (Piech et al., 2015a) are
a few topics currently being explored in the personalized
learning space.

Our aim is to build a domain-agnostic framework for mod-
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eling students and content that can be used in many online
learning products for applications such as adaptive lesson
sequencing, learning analytics, and content analytics. A
common data source available in products is a stream of in-
teraction data, or access traces that log student interactions
with modules of course content. These access traces come
in the form Student A completed Lesson B and Student C
passed assessment D. Lessons are content modules that in-
troduce or reinforce concepts; for example, an animation
of cellular respiration or a paragraph of text on Newton’s
first law of motion. Assessments are content modules with
pass-fail results that test student skills; for example, a true-
or-false question halfway through a video lecture. By re-
lying on a coarse-grained, binary assessment result, we are
able to gracefully handle many types of assessments (e.g.,
free response and multiple choice) so long as a student re-
sponse can be labelled as correct or incorrect.

We use access traces to embed students, lessons, and as-
sessments together in a joint semantic space, yielding a rep-
resentation that can be used to reason about the relationship
between students and content (e.g., the likelihood of pass-
ing an assessment, or the skill gains achieved by complet-
ing a lesson). The model is evaluated on synthetic data, as
well as large-scale real data from Knewton, an education
technology company that offers personalized recommen-
dations and activity analytics for online courses (Knewton,
2015). The data set consists of 2.18 million access traces
from over 7,000 students, recorded in 1,939 classrooms
over a combined period of 5 months.

2. Related Work
Our work builds on the existing literature in psychomet-
ric user modeling. The Rasch model estimates the prob-
ability of a student passing an assessment using latent
concept proficiency and assessment difficulty parameters
(Rasch, 1993). The two-parameter logistic item response
theory (2PL IRT) model adds an assessment discriminabil-
ity parameter to the result likelihood (Linden & Hambleton,
1997). Both models assume that a map from assessments
to a small number of underlying concepts is known a pri-
ori. We propose a data-driven method of learning content
representation that does not require a priori knowledge of
content-to-concept mapping. Though this approach sacri-
fices the interpretability of expert ratings, it has two advan-
tages: 1) it does not require labor-intensive expert annota-
tion of content and 2) it can evolve the representation over
time as existing content is modified or new content is intro-
duced.

Lan et al. propose a sparse factor analysis (SPARFA)
approach to modeling graded learner responses that uses
assessment-concept associations, concept proficiencies,
and assessment difficulty (Lan et al., 2014c). The algo-

rithm does not rely on an expert concept map, but in-
stead learns assessment-concept associations from the data.
Multi-dimensional item response theory (Reckase, 2009)
also learns these assocations from the data. We extend
the ideas behind SPARFA and multi-dimensional item re-
sponse theory to include a model of student learning from
lesson modules, which is a key prerequisite for recom-
mending personalized lesson sequences.

Bayesian Knowledge Tracing (BKT) uses a Hidden
Markov Model to model the evolution of student knowl-
edge (which is discretized into a finite number of states)
over time (Corbett & Anderson, 1994). Further work
(González-Brenes et al., 2014) has modified the BKT
framework to include the effects of lessons (described by
features) through an input-output Hidden Markov Model.
Similarly, SPARFA has been extended to model time-
varying student knowledge and the effects of lesson mod-
ules (Lan et al., 2014a). Item response theory has also been
extended to capture temporal changes in student knowledge
(Ekanadham & Karklin, 2015; Sohl-Dickenstein, 2014).
Recurrent neural networks have been used to trace stu-
dent knowledge over time and model lesson effects (Piech
et al., 2015c). Similar ideas for estimating temporal student
knowledge from binary-valued responses have appeared in
the cognitive modeling literature (Prerau et al., 2008; Smith
et al., 2004). We extend this work in a multi-dimensional
setting where student knowledge lies in a continuous state
space and lesson prerequisites modulate knowledge gains
from lesson modules.

Our model also builds on previous work that uses tempo-
ral embeddings to predict music playlists (Moore et al.,
2013). While Moore et al. focused on embedding objects
(songs) in a metric space, we propose a non-metric embed-
ding where the distances between objects (students, assess-
ments, and lessons) are not symmetric, capturing the natu-
ral progression in difficulty of assessments and the positive
growth of student knowledge.

3. Embedding Model
We now describe the probabilistic embedding model that
places students, lessons, and assessments in a joint se-
mantic space that we call the latent skill space. Students
have trajectories through the latent skill space, while as-
sessments and lessons are placed at fixed locations. For-
mally, a student is represented as a set of d latent skill levels
~s ∈ Rd

+; a lesson module is represented as a vector of skill
gains ~̀ ∈ Rd

+ and a set of prerequisite skill requirements
~q ∈ Rd

+; an assessment module is represented as a set of
skill requirements ~a ∈ Rd

+.

Students interact with lessons and assessments in the fol-
lowing way. First, a student can be tested on an assessment
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Figure 1. A graphical model of student learning and testing, i.e.
a continuous state space Hidden Markov Model with inputs and
outputs. ~s = student knowledge state, ~̀ = lesson skill gains, ~q
= lesson prerequisites, ~a = assessment requirements, and R = re-
sult. Assessments can be completed by different students multiple
times, each resulting in a separate result. Students can complete
different assessments multiple times, each resulting in a separate
result. Lessons can be completed by different students multiple
times. Students depend on their knowledge state at the previous
timestep.

module with a pass-fail result R ∈ {±1}, where the likeli-
hood of passing is high when a student has skill levels that
exceed the assessment requirements and vice-versa. Sec-
ond, a student can work on lesson modules to improve skill
levels over time. To fully realize the skill gains associated
with completing a lesson module, a student must satisfy
prerequisites (fulfilling some of the prerequisites to some
extent will result in relatively small gains, see Equation 3
for details). Time is discretized such that at every timestep
t ∈ N, a student completes a lesson and may complete zero
or many assessments. The evolution of student knowledge
can be formalized as the graphical model in Figure 1, and
the following subsections elaborate on the details of this
model.

3.1. Modeling Assessment Results

For student ~s, assessment ~a, and result R,

Pr(R = r) =
1

1 + exp (−r ·∆(~s, ~a))
(1)

where r ∈ {±1} and ∆(~s, ~a) = ~s·~a
‖~a‖ − ‖~a‖ + γs + γa.

~s and ~a are constrained to be non-negative (for details see
Section 4). A pass result is indicated by r = 1, and a fail
by r = −1. The term ~s·~a

‖~a‖ can be rewritten as ‖~s‖cos(θ),
where θ is the angle between ~s and ~a; it can be interpreted
as “relevant skill”. The term ‖~a‖ can be interpreted as gen-
eral (i.e. not concept-specific) assessment difficulty. The
expression ~s·~a

‖~a‖ − ‖~a‖ is visualized in Figure 2. The bias

Figure 2. Geometric intuition underlying the parametrization of
the assessment result likelihood (Equation 1). Only the length of
the projection of the student’s skills ~s onto the assessment vector
~a affects the pass likelihood of that assessment, meaning only the
“relevant” skills (with respect to the assessment) should determine
the result.

term γs is a student-specific term that captures a student’s
general (assessment-invariant and time-invariant) ability to
pass; it can be interpreted as a measure of how well the
student guesses correct answers. The bias term γa is a
module-specific term that captures an assessment’s general
(student-invariant and time-invariant) difficulty. γa differs
from the ‖~a‖ difficulty term in that it is not bounded; see
Section 4 for details. These bias terms are analogous to
the bias terms used for modeling song popularity in (Chen
et al., 2012).

Our choice of ∆ differs from classic multi-dimensional
item response theory, which uses ∆(~s,~a) = ~s·~a+γa where
s and a are not bounded (although in practice, suitable pri-
ors are imposed on these parameters). We have also chosen
to use the logistic link function instead of the normal ogive.

3.2. Modeling Student Learning from Lessons

For student ~s who worked on a lesson with skill gains ~̀ and
no prerequisites at time t+ 1, the updated student state is

~st+1 ∼ N
(
~st + ~̀, Σ

)
(2)

where the covariance matrix Σ = Idσ
2 is diagonal. For a

lesson with prerequisites ~q,

~st+1 ∼ N
(
~st + ~̀ · 1

1 + exp (−∆(~st, ~q))
, Σ

)
(3)

where ∆(~st, ~q) = ~st·~q
‖~q‖ − ‖~q‖. The intuition behind this

equation is that the skill gain from a lesson should be
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Figure 3. ~̀ = skill gains, ~q = prerequisites. Here, we illustrate
the vector field of skill gains possible for different students under
different lesson prerequisites. A student can compensate for lack
of prerequisites in one skill through excess strength in another
skill, but the extent to which this trade-off is possible depends on
the lesson prerequisites.

weighted according to how well a student satisfies the les-
son prerequisites. A student can compensate for lack of
prerequisites in one skill through excess strength in another
skill, but the extent to which this trade-off is possible de-
pends on the lesson prerequisites. The same principle ap-
plies to satisfying assessment skill requirements. Figure 3
illustrates the vector field of skill gains possible for differ-
ent students under different lesson prerequisites. Without
prerequisites, the vector field is uniform.

Our model differs from (Lan et al., 2014a) in that we ex-
plicitly model the effects of prerequisite knowledge on
gains from lessons. Lan et al. model gains from a lesson
as an affine transformation of the student’s knowledge state
plus an additive term similar to ~̀.

4. Parameter Estimation
We compute maximum-likelihood estimates of model pa-
rameters Θ by maximizing the following objective func-
tion:

L(Θ) =
∑
A

log (Pr(R | ~st,~a, γs, γa))

+
∑
L

log (Pr(~st+1 | ~st, ~̀, ~q))− β · λ(Θ)
(4)

where A is the set of assessment interactions, L is the set
of lesson interactions, λ(Θ) is a regularization term that
penalizes the L2 norms of embedding parameters (not bias
terms), and β is a regularization parameter. Non-negativity
constraints on embedding parameters (not bias terms) are
enforced.

L2 regularization is used to penalize the size of embedding
parameters to prevent overfitting. The bias terms are not
bounded or regularized. This allows −‖~a‖+ γa to be pos-
itive for assessment modules that are especially easy, and
~s·~a
‖~a‖ + γs to be negative for students who fail especially
often. We solve the optimization problem with box con-
straints using the L-BFGS-B (Zhu et al., 1997) algorithm.
We randomly initialize parameters and run the iterative op-
timization until the relative difference between consecutive
objective function evaluations is less than 10−3. Averag-
ing validation accuracy over multiple runs during cross-
validation reduces sensitivity to the random initializations
(since the objective function is non-convex).

5. Experiments on Synthetic Data
To verify the correctness of our model and to illustrate
the properties of the embedding geometry that the model
captures, we conducted a series of experiments on small,
synthetically-generated interaction histories. Each scenario
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is intended to demonstrate a different feature of the model
(e.g., recovering student knowledge and assessment re-
quirements in the absence of lessons, or recovering sensible
skill gain vectors for different lessons). For the sake of sim-
plicity, the embeddings are made without bias terms. The
figures shown are annotated versions of plots made by our
embedding software.

5.1. Recovering Assessments

The embedding can recover intuitive assessment require-
ments and student skill levels from small histories without
lessons. See Figures 7 and 8 for examples. These examples
also illustrate the fact that a multidimensional embedding
is more expressive than a one-dimensional embedding, i.e.
increasing the embedding dimension improves the model’s
ability to capture the dynamics of complicated scenarios.

5.2. Recovering Lessons

The embedding can recover orthogonal skill gain vectors
for lessons that deal with two different skills. See Figure 9
for an example in two dimensions.

The embedding can recover sensible lesson prerequisites.
In Figure 10, we recover prerequisites that explain a sce-
nario where a strong student realizes significant gains from
a lesson while weaker students realize nearly zero gains
from the same lesson.

6. Experiments on Online Course Data
We use data processed by Knewton, an adaptive learn-
ing technology company. Knewton’s infrastructure uses
student-module access traces to generate personalized rec-
ommendations and activity analytics for partner organiza-
tions with online learning products. The data describes in-
teractions between college students and two science text-
books. Both data sets are filtered to eliminate students with
fewer than five lesson interactions and content modules
with fewer than five student interactions. To avoid spam
interactions and focus on the outcomes of initial student at-
tempts, we only consider the first interaction between a stu-
dent and an assessment (subsequent interactions between
student and assessment are ignored). Each content module
in our data has both a lesson and assessment component.
To simulate a more general setting where the sets of les-
son and assessment modules are disjoint, each module is
randomly assigned to the set of lessons or the set of assess-
ments. We performed our experiments several times using
different random assignments, and observed that the results
did not change significantly.

Figure 4. The directed graph of module sequences for all stu-
dents in Book A. V = set of assessment and lesson modules,
(n1, n2) ∈ E with edge weight k if k students had a transition
from module n1 to n2 in their access traces. This graph shows
that module sequences are heavily directed by the order imposed
by the textbook, teachers, or a recommender system.
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Figure 5. Distribution of the lengths of student histories in the
Book A data set
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Figure 6. Distribution of the number of assessment interactions at
each timestep in the Book A data set. Long chains of assessment
interactions are rare, implying that students complete lesson mod-
ules with consistent frequency.
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Book A Book B
RANDOM LAST RANDOM LAST

d s a ` q γ TRAINING TEST TRAINING TEST TRAINING TEST TRAINING TEST
1 1 Y N N N N 0.659 0.605 0.659 0.626 0.723 0.696 0.723 0.686
2 1 N Y N N N 0.743 0.734 0.743 0.737 0.716 0.712 0.715 0.661
3 2 Y Y N N N 0.994 0.687 0.994 0.687 0.992 0.659 0.991 0.614
4 2 Y Y N N Y 0.995 0.673 0.994 0.705 0.993 0.745 0.992 0.726
5 2 Y Y Y N N 0.900 0.713 0.897 0.730 0.896 0.733 0.897 0.696
6 2 Y Y Y N Y 0.873 0.741 0.872 0.756 0.869 0.787 0.871 0.748
7 2 Y Y Y Y N 0.898 0.709 0.898 0.727 0.902 0.742 0.898 0.694
8 2 Y Y Y Y Y 0.890 0.732 0.889 0.753 0.872 0.787 0.882 0.749

Table 1. We conduct a lesion analysis to gain insight into which components of an embedding contribute most to prediction accuracy
(AUC)

6.1. Data

Here, we give summary statistics of the data sets we use to
evaluate our model.

6.1.1. Book A

This data set was collected from 869 classrooms from Jan-
uary 1, 2014 through June 1, 2014. It contains 834,811
interactions, 3,471 students, 3,374 lessons, 3,480 assess-
ments, and an average assessment pass rate of 0.712. See
Figures 4, 5, and 6 for additional data exploration.

6.1.2. Book B

This data set was collected from 1,070 classrooms from
January 1, 2014 through June 1, 2014. It contains
1,349,541 interactions, 3,563 students, 3,843 lessons,
3,807 assessments, and an average assessment pass rate of
0.693.

6.2. Assessment Result Prediction

We evaluate the embedding model on the task of predicting
results of held-out assessment interactions using the fol-
lowing scheme:

• We use ten-fold cross-validation to compute the val-
idation accuracies of variations of the embedding
model

• On each fold, we train on the full histories of 90%
of students and the truncated histories of 10% of stu-
dents, and validate on the assessment interactions im-
mediately following the truncated histories

• Truncations are made at random locations in student
histories, or just before the last batch of assessment
interactions for a given student (maximizing the size
of the training set)

We start by constructing two baseline models that pre-
dict the student pass rate and the assessment pass rate re-

spectively. The student baseline is equivalent to a one-
dimensional embedding of only students that is not regu-
larized or bounded (see row 1 of Table 1). Analogously,
the assessment baseline is equivalent to a one-dimensional
embedding of only assessments that is not regularized or
bounded (see row 2 of Table 1). We then gradually add
components to the embedding model to examine their ef-
fects on prediction accuracy. Initially, we omit lessons and
bias terms from the embedding, and only consider students
and assessments. We progressively include lesson param-
eters ~̀without prerequisites, prerequisite parameters ~q for
lessons, and bias terms γ. Each variant of the model corre-
sponds to a row in Table 1. Our performance metric is area
under the ROC curve (AUC), which measures the discrimi-
native ability of a binary classifier that assigns probabilities
to class membership.

Table 1 shows AUC performance on the assessment result
prediction task for different data sets (Book A and Book
B), student history truncation styles (random and last), and
models. All embeddings on both data sets use the default
parameter values σ2 = 0.5 and β = 10−6, which were
selected in exploratory experiments. All p-values are com-
puted using Welch’s t-test (Welch, 1947) for the results in
column (Book A, Last, Test). From these results, we ob-
serve the following:

• Including lessons in the embedding improves perfor-
mance significantly (p = 0.003 for rows 3 vs. 5,
p = 0.0005 for 4 vs. 6)

• Including prerequisites gives a modest performance
gain on Book B and a statistically insignificant de-
crease in performance on Book A (p = 0.913 for rows
5 vs. 7, p = 0.744 for 6 vs. 8)

• Including bias terms gives a large performance gain
(p = 0.02 for 5 vs. 6, p = 0.028 for 7 vs. 8)

• The assessment baseline performs surprisingly well
on Book A (see row 2)
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Skill 1

At t = 1,
•  Lee passes A1, fails A2
•  Carter fails A1 and A2

At t = 2,
•  Lee completes lesson L1, 

then passes A1 and A2
•  Carter completes lesson L1, 

then passes A1, fails A2

A2

LeeCarterA1

Skill 1

A2L1

= student = assessment = lesson

Figure 7. A one-dimensional embedding, where a single latent
skill is enough to explain the data. The key observation here is
that the model recovered positive skill gains for L1, and “cor-
rectly” arranged students and assessments in the latent space. Ini-
tially, Carter fails both assessments, so his skill level is behind
the requirements of both assessments. Lee passes A1 but fails
A2, so his skill level is beyond the requirement for A1, but be-
hind the requirement for A2. In an effort to improve their results,
Lee and Carter complete lesson L1 and retake both assessments.
Now Carter passes A1, but still fails A2, so his new skill level is
ahead of the requirements for A1 but behind the requirements for
A2. Lee passes both assessments, so his new skill level exceeds
the requirements for A1 and A2. This clear difference in results
before completing lesson L1 and after completing the lesson im-
plies that L1 had a positive effect on Lee and Carter’s skill levels,
hence the non-zero skill gain vector recovered for L1.

Evan
Passes A2, fails A1

Fogell
Fails A1 and A2

McLovin
Passes A1 and A2

A2

A1
Skill 1

Skill 2

Seth
Passes A1, fails A2

Figure 8. A two-dimensional embedding, where an intransitivity
in assessment results requires more than one latent skill to explain.
The key observation here is that the assessments are embedded on
two different axes, meaning they require two completely inde-
pendent skills. This makes sense, since student results on A1 are
uncorrelated with results on A2. Fogell fails both assessments,
so his skill levels are behind the requirements for A1 and A2.
McLovin passes both assessments, so his skill levels are beyond
the requirements for A1 and A2. Evan and Seth are each able to
pass one assessment but not the other. Since the assessments have
independent requirements, this implies that Evan and Seth have
independent skill sets (i.e. Evan has enough of skill 2 to pass A2

but not enough of skill 1 to pass A1, and Seth has enough of skill
1 to pass A1 but not enough of skill 2 to pass A2).

Fogell

McLovin

A2

A1
Skill 1

Sk
ill

 2

Seth

Evan

Slater (t = 1)
Passes A2, fails A1

Slater (t = 2)
Reads L1, then Passes A1 and A2

Michaels (t = 1)
Passes A1, fails A2

Michaels (t = 2)
Reads L2, 
then Passes A1 and A2

= student = assessment = lesson

L1

L2

Figure 9. We replicate the setting in Figure 8, then add two new
students Slater and Michaels, and two new lesson modules L1

and L2. Slater is initially identical to Evan, while Michaels is
initially identical to Seth. Slater reads lesson L1, then passes as-
sessments A1 and A2. Michaels reads lesson L2, then passes
assessments A1 and A2. The key observation here is that the skill
gain vectors recovered for the two lesson modules are orthogonal,
meaning they help students satisfy completely independent skill
requirements. This makes sense, since initially Slater was lacking
in Skill 1 while Michaels was lacking in Skill 2, but after com-
pleting their lessons they passed their assessments, showing that
they gained from their respective lessons what they were lacking
initially.

Fogell

A2

A1
Skill 1

Skill 2

Seth

Evan

McLovin (t = 1)
Fails A3

A3
McLovin (t = 2)
Reads L1, then passes A3

Vector field of skill gains for L1

Prerequisites of L1

Figure 10. We replicate the setting in Figure 8, then add a new
assessment module A3 and a new lesson module L1. All stu-
dents initially fail assessmentA3, then read lessonL1, after which
McLovin passes A3 while everyone else still fails A3. The key
observation here is that McLovin is the only student who initially
satisfies the prerequisites for L1, so he is the only student who
realizes significant gains.



Learning Representations of Student Knowledge and Educational Content

One issue that may have affected the findings is the bi-
ased nature of student paths, which has been discussed by
(González-Brenes et al., 2014). In the data, we observe that
student paths are heavily directed along common routes
through modules. We conjecture that this bias dulls the ef-
fect of including prerequisites in the embedding, allowing
the assessment baseline to perform well in certain settings,
and causing the inclusion of bias terms to give a large per-
formance boost. Most students attack an assessment with
the same background knowledge, so an embedding that
captures the variation in students who work on the same
assessment is not as valuable. In a regime where students
who work on an assessment come from a variety of skill
backgrounds, the embedding may outperform the baselines
by a wider margin.

Here, we explore the parameter space of the embedding
model by varying the regularization constant β, learning
update variance σ2, and embedding dimension d:

• From Figure 11, we find that regularizing via β is not
necessary and that any small value of β gives good
performance. Our conjecture is that the Gaussian les-
son model already acts as a regularizer. Results for
changing d are shown in Figure 12. In summary, we
find that increasing embedding dimension d substan-
tially improved performance for embedding models
without bias terms, but that it has little effect on per-
formance for embeddings with bias terms. The former
is expected, since the embedding itself must be used
to model general student passing ability and general
assessment difficulty.

• From Figure 13, very small and very large σ perform
poorly. For very large σ, the Gaussian steps caused
by lesson interactions have so much variance that they
might as well not occur, causing the embedding with
lessons to effectively degenerate into an embedding
without lessons. We see this occur when performance
for d=2, with bias approaches that of d=2, without
lessons as σ is increased.

Here, we measure the sensitivity of model performance to
the size of the training set:

• Performance is mostly affected by a student’s recent
history. We see this in the drastic plateau of vali-
dation accuracy after a student’s history is extended
more than fifty interactions into the past in Figure 19.

• The number of full student histories in the training set
has a strong effect on performance (via the quality of
module embeddings). We see this in the positive rela-
tionship between validation accuracy and the number
of full histories in Figure 20.
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Figure 11. Book A, fixed student history truncations, σ2 = 0.5.
Note that a high regularization constant for d=2, with bias sim-
ulates a one-parameter logistic item response theory (1PL IRT)
model.
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Figure 12. Book A, fixed student history truncations, σ2 = 0.5
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Figure 13. Book A, fixed student history truncations, β = 10−6
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Figure 14. Student pass rate seems to be the result of passing γs
through a logistic function, which corresponds to our model of
assessment results (see Equation 1)
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Figure 15. Assessment pass rate seems to be the result of passing
−‖~a‖+ γa through a logistic function, which corresponds to our
model of assessment results (see Equation 1)

6.3. Qualitative Evaluation

Here, we explore the recovered model parameters of a two-
dimensional embedding of the Book A data set. In Figures
14 and 15, we see that the recovered student and assessment
parameters are tied to student and assessment pass rates in
the training data. In Figure 16, we see that the learning sig-
nals aggregated across students grow over time (i.e., stu-
dents are generally learning and improving their skills over
time); Figure 18 gives an example of one of these learning
signals, or “student trajectories”. Together, these figures
demonstrate the ability of the embedding to recover sensi-
ble model parameters.

6.4. Lesson Sequence Discrimination

The ability to predict future performance of students on as-
sessments, while a useful metric for evaluating the learned
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Figure 16. Students’ skill levels, i.e. the Frobenius norm of the
matrix of embeddings of all students for a given t, improve over
time
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Figure 17. ‖~̀‖ vs. ‖~q‖ (see Equation 3). The reason for the shape
of this plot is unclear.
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Figure 18. A two-dimensional embedding of a student over time.
White indicates where the student starts, and black indicates
where the student ends. The variance of the learning update σ2

has an effect on the tortuosity of student trajectories. Smaller σ
leads to paths that show less student forgetting (i.e. do not double
back on themselves), while larger σ allows for more freedom.
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Figure 19. Area under ROC curve is computed for assessment in-
teractions at T ≈ 201 after training from T − depth to T . For
students who do not have assessment interactions at T = 201, we
select the soonest T > 201 such that the student has assessment
interactions. Performance is mostly affected by a student’s recent
history. We see this in the drastic plateau of validation accuracy
after a student’s history is extended more than 50 interactions into
the past.
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Figure 20. Area under ROC curve is computed for 10% of stu-
dents, using fixed history truncations. The number of full student
histories in the training set has a strong effect on performance
(via the quality of module embeddings). We see this in the pos-
itive relationship between validation accuracy and the number of
full histories.
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Figure 21. A schematic diagram of a bubble, where triangles are
lessons and squares are assessments. The green path is the rec-
ommended path (note that recommendations are personalized to
each student).

embedding, does not address the more important task of
adaptive tutoring via customized lesson sequence recom-
mendation. We introduce a surrogate task for evaluating
the sequence recommendation performance of the model
based entirely on the observational data of student interac-
tions, by assessing the model’s ability to recommend “pro-
ductive” paths amongst several alternatives.

The size of the data set creates a unique opportunity to
leverage the variability in learning paths to simulate the
setting of a controlled experiment. For this evaluation, we
use a larger version of the Book A data set examined in
Section 6.2, containing 14,707 students and 14,327 content
modules. We find that the data contains many instances of
student paths that share the same lesson module at the be-
ginning and the same assessment module at the end, but
contain different lessons along the way. We call these in-
stances bubbles, for example see Figure 21, which present
themselves as a sort of natural experiment on the relative
merits of two different learning progressions. We can thus
use these bubbles to evaluate the ability of an embedding
to recommend a learning sequence that leads to success, as
measured by the relative performance of students who take
the recommended vs. the not recommended path to the as-
sessment module at the end of the bubble.

We use the full histories of 70% of students to embed les-
son and assessment modules, then train on the histories of
held-out students up to the beginning of a bubble. The les-
son sequence for a student is then played over the initial
student embedding, using the learning update (Equation 3)
to compute an expected student embedding at the end of
the bubble (which can be used to predict the passing likeli-
hood for the final assessment using Equation 1). The path
that leads the student to a higher pass likelihood on the final
assessment is the “recommended” path. Our performance
measure is E

[
E[R′]−E[R]

E[R]

]
, where R′ ∈ {0, 1} is the out-

come at the end of the recommended path and R ∈ {0, 1}
is the outcome at the end of the other path (0 is failing and
1 is passing). This measure can be interpreted as “expected
gain” (averaged over many bubbles) from taking recom-
mended paths, or how “successful” the paths recommended
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Figure 22. The x-axis represents a threshold on absolute differ-
ence between pass rates of the two bubble paths. The y-axis ticks
on the left correspond to the gain curves, and the y-axis ticks on
the right correspond to the gray bins that illustrate the number of
bubbles that meet the threshold given on the x-axis. Bubbles are
filtered to meet the following criteria: at least ten students take
each branch, each branch must contain at least two lessons, and
both branches must contain the same number of lessons.

by the model are when compared to the alternative.

This observational study is potentially confounded by
many hidden variables. For example, it may be that one
group of students systematically takes recommended paths
while another group of students does not, leading to re-
sults at the end of a bubble that are mostly dictated by the
teachers directing the groups, or other student-specific hid-
den factors, rather than path quality. To best approximate
the settings of a randomized controlled trial in our observa-
tional study, we use the standard propensity score matching
approach for de-biasing observational data (Rosenbaum &
Rubin, 1983; Caliendo & Kopeinig, 2008). The key idea
behind propensity score matching is to subset the observed
data in a way that balances the distribution of the fea-
tures (“hidden variables”) describing subjects in the two
conditions, as it would be expected in a randomized ex-
periment. The validity of any conclusion drawn from the
observational data de-biased in this way hinges on the as-
sumption that all confounding variables that determine self-
selection have been accounted for in the features prior
to matching. In this study, we hypothesize that the set
of all lesson modules and assessment modules (with out-
comes) that the learner attempted throughout his or her
duration in the online system is sufficient to compensate
for any self-selection in the taken learning paths. For-
mally, we represent learners in a feature space X such that
Xij ∈ {−1, 0, 1}, where Xij = 1 if student i passed mod-
ule j (lessons are always “passed”), Xij = 0 if student i
has not completed module j, and Xij = −1 if student i
failed module j.

We use PCA to map X to a low-dimensional feature space

where students are described by 1,000 features, which cap-
ture 80% of the variance in the original 14,327 features. A
logistic regression model with L2 regularization is used to
estimate the probability of a student following the recom-
mended branch of a bubble, i.e. the propensity score, given
the student features (the regularization constant is selected
using cross-validation to maximize average log-likelihood
on held-out students). Within each bubble, students who
took their recommended branch are matched with their
nearest neighbors (by absolute difference in propensity
scores) from the group of students who did not take their
recommended branch. Matching is done with replacement
(so the same student can be selected as a nearest neigh-
bor multiple times) to improve matching quality, trading
off bias for variance. Multiple nearest neighbors can be
matched (we examine the effect of varying the number of
nearest neighbors), trading off variance for bias.

Naturally, our evaluation metric of gain in the pass
rate from following a recommended path would depend
strongly on the relative merits of the recommended and al-
ternative paths. From Figure 22, the two-dimensional em-
bedding model with lessons, prerequisites, and bias terms
(the same configuration as row 8 in Table 1) is able to rec-
ommend more successful paths when there is a significant
difference between the quality of the two paths, as mea-
sured by the absolute difference in pass rates between the
two paths (regardless of choice of propensity score match-
ing).

7. Outlook and Future Work
7.1. Model Extensions

An issue with our model is that we cannot embed new mod-
ules that do not have any existing access traces. One way
to solve this cold start problem is to jointly embed mod-
ules with semantic tags, i.e. impose a prior distribution
on the locations of modules with certain tags. This ap-
proach has been previously explored in the context of music
playlist prediction (Moore et al., 2012). Embedding with
tags has the added benefit of making the dimensions of
the latent skill space more interpretable, as demonstrated
in (Lan et al., 2014b).

Another approach to solving the cold start problem is to
use an expert content-to-concept map to impose a prior on
module embeddings that captures 1) the grouping of mod-
ules by underlying concept and 2) the prerequisite relation-
ships between concepts (which translate into prerequisite
relationships between modules). The objective function
(recall Section 4) would penalize the cosine distance be-
tween modules governed by the same concept, and reward
arrangements of modules that reflect prerequisite edges in
the concept graph.
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The variance parameter σ2 in the learning update (Equa-
tion 2) can be used to model offline learning and forgetting.
Though we treat it as a constant across students in earlier
experiments, it can also be estimated as a student-specific
parameter and as a function of the real time elapsed be-
tween lesson interactions.

The forgetting effect, where student knowledge diminishes
during the gap between interactions, may be modeled as a
penalty in the skill gains from a lesson that increases with
the time elapsed since the previous interaction. A substan-
tially similar approach has been explored in (Lan et al.,
2014a).

7.2. Adaptive Lesson Sequencing

Given a student’s current skill levels and a set of assess-
ments the student wants to pass, what is the optimal se-
quence of lessons for the student? We can formulate the
problem two ways: specify a minimum pass likelihood for
the goal assessments and find the shortest path to mas-
tery, or specify a time constraint and find the path that
leads to the highest pass likelihood for the goal assessments
while not exceeding the prescribed length. Both problems
can be tackled by using a course embedding to specify a
Markov Decision Process (Bellman, 1957), where state is
given by the student embedding, the set of possible actions
corresponds to the set of lesson modules that the student
can work on, the transition function is the learning update
(Equation 3), and the reward function is the likelihood of
passing all goal assessments (Equation 1).

An issue we have not considered is the spacing effect
(Dempster, 1988). If a student learns on a known time
frame (e.g., 1-3pm on weekdays), it is possible for the
adaptive tutor to adjust the learning schedule to present
review modules in a timely manner or help a student
cram. For theoretical work on the timing of modules see
(Novikoff et al., 2012).

7.3. Learning and Content Analytics

We speculate that a course embedding can be used to mea-
sure the following characteristics of educational content:
lesson quality, through magnitude of the skill gain vector
‖~̀‖; the diversity of skills and concept knowledge relevant
for a course, through the embedding dimension that opti-
mizes validation accuracy on the assessment result predic-
tion task; the availability of content that teaches and as-
sesses different skills, through the density of modules em-
bedded in different locations in the latent skill space. The
following characteristics of student learning may also be of
interest: the rate of knowledge acquisition, through the ve-
locity of a student moving through the latent skill space; the
rate of knowledge loss (i.e. forgetting), through the amount
of backtracking in a student trajectory.

8. Conclusions
We presented a general model that learns a representation
of student knowledge and educational content that can be
used for personalized instruction, learning analytics, and
content analytics. The key idea lies in using a multi-
dimensional embedding to capture the dynamics of learn-
ing and testing. Using a large-scale data set collected in
real-world classrooms, we (1) demonstrate the ability of
the model to successfully predict learning outcomes and (2)
introduce an offline methodology as a proxy for assessing
the ability of the model to recommend personalized learn-
ing paths. We show that our model is able to successfully
discriminate between personalized learning paths that lead
to mastery and failure.
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