
ASHA: Assistive Teleoperation
via Human-in-the-Loop Reinforcement Learning

Sean Chen1∗, Jensen Gao1∗, Siddharth Reddy1, Glen Berseth1,2,3, Anca D. Dragan1, Sergey Levine1

Abstract— Building assistive interfaces for controlling robots
through arbitrary, high-dimensional, noisy inputs (e.g., webcam
images of eye gaze) can be challenging, especially when it
involves inferring the user’s desired action in the absence of a
natural ‘default’ interface. Reinforcement learning from online
user feedback on the system’s performance presents a natural
solution to this problem, and enables the interface to adapt
to individual users. However, this approach tends to require
a large amount of human-in-the-loop training data, especially
when feedback is sparse. We propose a hierarchical solution
that learns efficiently from sparse user feedback: we use offline
pre-training to acquire a latent embedding space of useful, high-
level robot behaviors, which, in turn, enables the system to
focus on using online user feedback to learn a mapping from
user inputs to desired high-level behaviors. The key insight is
that access to a pre-trained policy enables the system to learn
more from sparse rewards than a naı̈ve RL algorithm: using
the pre-trained policy, the system can make use of successful
task executions to relabel, in hindsight, what the user actually
meant to do during unsuccessful executions. We evaluate our
method primarily through a user study with 12 participants
who perform tasks in three simulated robotic manipulation
domains using a webcam and their eye gaze: flipping light
switches, opening a shelf door to reach objects inside, and
rotating a valve. The results show that our method successfully
learns to map 128-dimensional gaze features to 7-dimensional
joint torques from sparse rewards in under 10 minutes of online
training, and seamlessly helps users who employ different gaze
strategies, while adapting to distributional shift in webcam
inputs, tasks, and environments.

I. INTRODUCTION

Shared-control teleoperation interfaces can help users con-
trol systems like robotic arms and wheelchairs more effec-
tively [1]–[5]. For example, they can help users perform dex-
terous robotic manipulation tasks by automatically maximiz-
ing contact area with grasped objects [6], or enable control
via complex user input streams like eye gaze [7], [8] and
brain-computer interfaces [9]. In this paper, we focus on the
problem of efficiently training an interface to infer the user’s
desired action (e.g., robot arm motion) from an arbitrary,
high-dimensional, noisy control input (e.g., webcam image
of eye gaze). This stands in contrast to prior work on shared
autonomy that assumes the user already has a viable interface
for direct teleoperation and only aims to improve the user’s
performance by minimally intervening in the user’s actions
to avoid collisions [10]–[13], preserving the reachability of
potential goals [14], or inferring goals and acting to reach
them [15]–[19]. Other prior methods do not require a direct
teleop interface, and instead perform supervised calibration

∗Equal Contribution, 1University of California, Berkeley, 2Université de
Montréal, 3MILA. Contact: sgr@berkeley.edu. Code, data, and videos
available at https://sites.google.com/view/asha-assist.

Phase 1:
Autonomous Pre-Training

Phase 2:
Human-in-the-Loop Learning

Pre-Training
Tasks

User’s
Control
Input

Input
Encoder

Latent-
conditioned

policy

Spec.
Encoder

User
Interface

Reward

Task-
Conditioned

Policy

Pre-trained
policy

Fig. 1: In this example, the user directs their gaze to control
a wheelchair-mounted Jaco arm to push different light switches.
During the autonomous pre-training phase, ASHA learns a task-
conditioned policy πspec

ψ,φ that can flip various switches. This policy
is decomposed into a latent variable model with two components: a
specification encoder f spec

ψ , which maps a task specification τ spec

(e.g., goal state) to a latent embedding z; and a latent-conditioned
policy gφ. In phase 1, we jointly pre-train f spec

ψ and gφ to flip
switches. In phase 2, we use human-in-the-loop RL to train an
interface πinpt

θ,φ that enables the user to control the arm using their
eye gaze, and perform new tasks sampled from the same distribution
as the pre-training tasks. To speed up learning, this interface is also
represented as a latent variable model with two components: an
input encoder f inpt

θ , which maps the user’s control input x (e.g.,
webcam image) to a high-level, latent action z; and the pre-trained
latent-conditioned policy gφ.

on paired examples of inputs and actions [20]–[27]. However,
this approach can also be limiting, in that it does not learn
from the user’s online interactions with the system during
deployment, and as a result, does not improve with use or
adapt to distributional shift in the user’s inputs, tasks, and
environments.

In this paper, we consider a different problem setting than
the aforementioned prior work: instead of requiring a direct
teleop interface or limiting data collection to explicit calibra-
tion phases, we elicit user feedback on the system’s online
performance and train the interface through reinforcement
learning (RL) [28]. Our adaptive interface observes the user’s
input, takes an action, receives a sparse, binary reward signal
from the user at the end of each episode that indicates task
success or failure, and learns to optimize this feedback. This
approach is appealing because it scales with regular use: the
more the user uses the interface to perform the activities of
daily living [29]–[31], the more competent and personalized
the interface becomes. Note that, in contrast to prior work on

https://sites.google.com/view/asha-assist

human-in-the-loop RL like COACH [32], [33], TAMER [34],
[35], and preference learning [36], [37], we aim to train an
interface that enables the user to control the robot at test time
and perform different tasks, instead of training the robot to
autonomously perform a single task. The main challenge is
that, due to the sparsity of rewards, it can require a large
amount of training data, which may be impractical for an
individual user operating a physical robot.

We propose a hierarchical solution to this challenge: use
offline pre-training to learn to perform potentially-useful
tasks, then use online user feedback to learn a mapping
from user inputs to robot behaviors (see Figure 1). In the
pre-training phase, we train a task-conditioned policy to
perform a wide variety of tasks without the user in the
loop (e.g., rotating a valve to various target angles), and
automatically discover useful, high-level robot behaviors in
the process (e.g., rotating the valve clockwise or counter-
clockwise). Then, in the online learning phase, we bring
the user into the loop, and use RL with sparse, user-
provided rewards to learn how to interpret the user’s inputs
as desired high-level behaviors. We leverage the pre-trained
policy to extract more information from the user’s sparse
online rewards than standard RL algorithms: (a) when the
user successfully completes a task, we observe information
(e.g., the final state) that enables us to compute an optimal
policy for that task in hindsight using our pre-trained task-
conditioned policy, then train the interface to imitate that
optimal policy; and (b) assuming that when the user fails,
they attempt the same task again until they succeed, we can
also relabel actions from failed trajectories with an optimal
policy calculated in hindsight after an eventual success. We
call this algorithm ASsistive teleoperation via HumAn-in-the-
loop reinforcement learning (ASHA).

We primarily evaluate ASHA through a user study with
12 participants who use a webcam and their eye gaze
to perform tasks in three simulated manipulation domains:
flipping light switches, opening a shelf door to reach objects
inside, and rotating a valve (see Figure 2 for screenshots).
The results show that our method successfully learns to
map 128-dimensional gaze features to 7-dimensional joint
torques from sparse rewards in under 10 minutes of online
training, while adapting to distributional shift in the user’s
webcam input caused by changes in ambient lighting and
head position (Section III-A); changes in the user’s set of
desired tasks, like the addition of a new light switch (Section
III-B); and changes in environmental conditions, like whether
a shelf door is initially open or closed (Section III-C). In both
domains, ASHA increased success rates for the majority of
users, compared to a non-adaptive baseline interface. Even
though users employed a variety of strategies to operate
the interface – e.g., looking directly at the target, looking
at distant parts of the screen to indicate different targets,
exaggerating their gaze to correct the robot, and dynamically
guiding the robot to subgoals – ASHA was able to seamlessly
adapt to the different communication styles by learning from
individual user data.

II. TRAINING AN ASSISTIVE USER INTERFACE

In our setting, the user cannot directly operate the robot.
Instead, the user relies on an assistive interface that infers
the user’s intended action from available inputs, such as
webcam images of eye gaze, or signals recorded by a brain
implant. We do not require prior knowledge of how to parse
the user’s input, and instead treat the user’s input as a raw,
undifferentiated bitstream. The user’s desired task is typically
not directly observable to the robot, and this desired task
may change between episodes. As such, we formulate the
assistance problem as a partially-observable Markov decision
process (POMDP) [38]. The state consists of the state of
the environment st (e.g., the position and orientation of the
robot) and the user’s desired task T (e.g., flipping a particular
light switch). The observation consists of the state of the
environment st and the user’s control input xt (e.g., an image
of their eyes that captures gaze direction), but not the task
T . The user’s control input xt communicates their intent to
the robot. We do not assume access to the user’s desired
task T , since this can be difficult for the user to specify.
Instead, we elicit a sparse, binary reward signal rt ∈ {0, 1}
from the user, in the form of a button press that indicates
task success or failure at the end of each episode. We aim
to learn an interface πinpt(at|s0:t,x0:t) that optimizes this
user-provided reward feedback. We also aim to minimize the
number of human interactions required to learn this interface.

Our approach to this problem is outlined in Figure 1.
Training an assistive interface through human-in-the-loop
RL with sparse rewards typically requires many hours of
interactions with users, in part due to the difficulty of
simultaneously learning to control the environment and infer
the user’s intent [11]. However, in typical teleoperation tasks,
there are aspects of controlling the environment that can be
learned separately from the user. Hence, we decompose the
problem into two phases: (1) pre-training a policy g(at|st, z)
that is parameterized by a high-level latent variable z and can
perform potentially-useful tasks; and (2) learning a mapping
f inpt(z|s0:t,x0:t) from the user’s control inputs x to the
user’s desired high-level behavior z.

A. Phase 1: Autonomous Pre-Training of a Task-Conditioned
Policy

In many teleoperation domains, we can conservatively
define a task distribution that covers a wide variety of
behaviors that the user may potentially want to execute in the
future – e.g., opening and closing cupboards in a kitchen, or
flipping light switches on a wall – and then pre-train the robot
to perform those tasks, without the user in the loop. Our final
system is not necessarily limited to selecting from among
these pre-training tasks. Rather, the space of skills acquired
in phase 1 is meant to act as a kind of ‘basis’ for the tasks that
the user might want to perform in phase 2, and continuous
input from the user will be used to infer the desired behavior
in terms of this basis. This space can also be viewed as a
reparameterization of the policy space: instead of searching
over all possible policy parameters during the human-in-the-
loop learning phase, the system will search over high-level

behaviors in the latent space acquired during this autonomous
pre-training phase.

During phase 1, we assume the ability to sample tasks
Ti ∼ p(T), a specification τ speci of each task, and a reward
function Ri(st,at) for each task. These reward functions
Ri are only used for pre-training, and are not required
during phase 2 of human-in-the-loop learning, when the
user will perform new, unknown tasks drawn from the same
distribution p(T). Also note that the specification τ speci does
not have to be a full trajectory, but merely a representation
of the task that can be extracted from a successful trajectory
– in our experiments, we define a set of goal-reaching tasks,
set each specification τ speci to be the 3D position of the target
object or 1D target angle of the valve, and define a reward
function Ri for each task. To ensure that we learn a basis
of skills, rather than a separate policy for each of the pre-
training tasks, we follow prior work [39] and represent the
robot’s policy as a latent variable model,

πspec
ψ,φ (at|st; τ speci) , Ez∼fspec

ψ (z|τspec
i)[gφ(at|st, z)], (1)

where f specψ is the ‘specification encoder’, gφ is the ‘latent-
conditioned policy’, πspec

ψ,φ is the composition of f specψ and
gφ, z ∈ Rd is a latent variable that characterizes the task
(we set d = 3 in our experiments), the prior distribution
of z is the standard normal distribution N (0, Id), and the
action at is conditionally independent of the specification
τ speci given the state st and latent embedding z. At the
beginning of each pre-training episode, we sample a task
Ti ∼ p(T). We then jointly pre-train the latent-conditioned
policy gφ and specification encoder f specψ to optimize the
task rewards Ri using RL – in our implementation, we
use the soft actor-critic algorithm (SAC) [40]. An important
consequence of the latent variable model in Equation 1 is
that, in addition to optimizing the task rewards Ri, we
regularize the latent embedding z to its prior distribution
N (0, Id) using a variational information bottleneck (VIB)
[41], [42]. The VIB encourages the model to learn a smooth,
compressed latent space that shares information across tasks,
and encourages the specification encoder f specψ to discard
task-irrelevant information about the specification τ speci from
the embedding z – this is critical to phase 2 of our method,
because it prevents the interface from attempting to infer
these task-irrelevant details from the user’s control inputs
(see Q2 in Section IV-A).

B. Phase 2: Human-in-the-Loop Reinforcement Learning of
a User Interface

Now that we have acquired a latent embedding space of
high-level robot behaviors (the left half of Figure 1), we turn
to the problem of learning an interface that maps user inputs
to desired high-level behaviors (the right half of Figure 1).
We represent the interface as a latent variable model that
reuses the pre-trained latent-conditioned policy gφ,

πinpt
θ,φ (at|s0:t,x0:t) , Ez∼f inpt

θ (z|s0:t,x0:t)
[gφ(at|st, z)], (2)

where f inptθ is the ‘input encoder’, πinpt
θ,φ is the composition

of f inptθ and gφ, and the prior distribution of z is the standard

normal distribution N (0, Id). Note that the input encoder
f inptθ differs from the specification encoder f specψ learned in
the pre-training phase: f inptθ reads in the user’s control input
x (e.g., gaze), while f specψ takes a specification τ spec (e.g.,
goal state) as input instead. Since the user’s inputs x are
only partial observations of the state variable T that defines
the task, the interface πinpt

θ,φ is generally conditioned on the
full sequence of states s0:t and inputs x0:t. However, in
our switch and bottle experiments, we find that conditioning
on only the most recent state st and input xt works well
empirically.

Given the latent variable model in Equation 2, we train
f inptθ through RL from user feedback. Recent work in this
area [43] suggests a straightforward method: assign a reward
of 1 to successes, 0 to failures, and run a standard RL
algorithm that essentially imitates the successful trajectories
while down-weighting the failed trajectories. Unfortunately,
due to the sparsity of the rewards, this approach would
typically require a prohibitive amount of human interaction
(see Q3 in Section IV-A). However, we contribute a novel
insight that makes the method practical: we can extract
more information from successful trajectories, by not simply
imitating the actions that were actually taken (since some of
them may be suboptimal), but instead imitating an optimal
policy for the task that was completed. We can also extract
more information from failed trajectories in the same manner,
if we assume that when the user fails to perform a task, they
reset the robot to its initial state (e.g., retract the robotic
arm on their wheelchair back to its mount), and try to
perform the same task again and again until they succeed.
We now operationalize these two ideas, then arrive at our
final method.
Learning efficiently from successes in hindsight. Instead
of simply imitating a successful trajectory, we imitate an
optimal policy conditioned on task information extracted
from the successful trajectory. Let D denote the set of
successful trajectories. From each of these successes, we
extract a specification τ spec of the user’s desired task at
the time – e.g., in the switch and bottle domains, we set
τ spec to be the final 3D position of the object manipulated in
the successful trajectory, analogous to the pre-training phase
in Section II-A. We then combine this task specification
τ spec with the pre-trained task-conditioned policy πspec

ψ,φ to
represent the optimal policy πspec

ψ,φ (at|st, τ spec) via Equation
1. The key idea is to match the interface πinpt

θ,φ with the
optimal policy πspec

ψ,φ , by optimizing the loss,

L(θ) =
∑
τ∈D,t

DKL(π
spec
ψ,φ (·|st, τ spec) ‖ πinpt

θ,φ (·|s0:t,x0:t))

+βDKL(f
inpt
θ (·|s0:t,x0:t) ‖ N (0, Id)), (3)

where the second term is the VIB for the latent variable
model in Equation 2, and β is a regularization constant.
By minimizing the divergence between the policies induced
by the input encoder f inptθ and the pre-trained specification
encoder f specψ , we force f inptθ to infer a latent embedding
that induces the same low-level action distribution as the

Algorithm 1 Assistive Teleoperation via Human-in-the-Loop
Reinforcement Learning (ASHA)

1: gφ, f
spec
ψ ← RL({τ speci , Ri}i) . pre-train the latent-

conditioned policy and specification encoder autonomously
2: while true do
3: T ∼ p(T) . user chooses a task
4: D ← [] . initialize empty list of trajectories for current task
5: while robot has not succeeded at task T yet do
6: τ ← [] . initialize empty trajectory
7: s0 ∼ p(s0) . reset environment
8: for t ∈ {0, 1, 2, ..., T − 1} do
9: xt ← user’s control input

10: at ∼ πinpt
θ,φ (at|s0:t,x0:t) . robot performs action

11: τ .append(st,xt)
12: st+1 ∼ p(st+1|st,at) . environment evolves
13: D.append(τ) . store trajectory (even if a failure)
14: τ spec ← final, successful trajectory τ in D
15: θ ← θ−∇θ

∑
τ∈D,tDKL(π

spec
ψ,φ (·|st, τ spec) ‖ πinpt

θ,φ (·|s0:t,x0:t))
16: +VIB(θ) . update input encoder

embedding inferred by f specψ . This helps to reduce the
amount of human interaction required to train the system
(see Q5 in Section IV-A). Note that optimizing Equation 3
does not necessarily force both encoders to produce the same
embedding, since different embeddings can induce the same
low-level action distribution. This keeps our method flexible,
and enables the user to guide the robot to subgoals.
Learning efficiently from failures in hindsight. Instead
of simply treating failed trajectories as examples of behavior
that achieved zero reward, we take the final, successful trajec-
tory at the end of a string of failed trajectories that attempted
to perform the same task, extract a task specification τ spec

from this successful trajectory, compute the optimal policy
πspec
ψ,φ (at|st, τ spec) for all the states in the success and the

failures, and optimize the loss in Equation 3. The key idea
is that successful episodes enable us to compute the optimal
policy for the most recent failure episodes, because a string
of failures and eventual success are all attempts to perform
the same task. This helps to minimize the human interaction
required to train the system (see Q4 in Section IV-A).

C. Algorithm Summary

Our complete assistive teleoperation method is summa-
rized in Algorithm 1. We initially pre-train the latent-
conditioned policy gφ and specification encoder f specψ with a
set of task specifications and reward functions {τ speci , Ri}i
using a standard RL algorithm with a VIB – our imple-
mentation constructs several goal-reaching tasks and pre-
trains on them with SAC. We then begin training the input
encoder f inptθ with the user in the loop. First, the user
decides on a task T , which we assume is sampled from
the same distribution p(T) as the pre-training tasks. At each
timestep t, the environment generates the next state st, and
the user provides the system with input xt. After seeing the
input xt, the robot takes an action at sampled from the
interface πinpt

θ,φ defined by the input encoder f inptθ and the
pre-trained latent-conditioned policy gφ via Equation 2. At
the end of each trajectory, we ask the user whether the robot

Task: flip the light switch

User’s desired
switch

(a)

Task: open the sliding
door, then reach the bottle

User’s desired
bottle

(b)

User’s target
position for

puck

“Puck”

(c) (d)

Task: rotate
valve

to target angle

Task: push puck
to target position

Webcam 128-dim.
gaze

features

Pre-trained
iTracker model

(Krafka et al., 2016)

Webcam inputs

Fig. 2: The user sees the simulated environment through the point of
view of someone sitting in the wheelchair, and directs their gaze to
communicate what they want the robot to do. In the switch domain
(a), the user must push down on the blue lever. In the bottle domain
(b), the user must open the sliding door if necessary, then reach for
the blue bottle. In the valve domain (c), the user must rotate the
valve so that the blue tip points at the red sphere. In the puck
domain (d), the user must push the white puck to the blue target.

succeeded or failed. If the robot fails, we reset and assume
the user attempts to perform the same task again. If the robot
succeeds, we take the successful trajectory, extract a task
specification τ spec from it, use the pre-trained specification
encoder f specψ and latent-conditioned policy gφ to define an
optimal policy for the task via Equation 1, and train the
input encoder f inptθ to induce actions that match that optimal
policy, by optimizing the loss in Equation 3. We find that
training f inptθ to convergence in line 16 using mini-batch
stochastic gradient descent on all past data, including data
D from previous tasks T , works well empirically. The user
then decides on a new task, and we repeat with the updated
input encoder f inptθ .

III. USER STUDIES

In our experiments, we evaluate to what extent ASHA can
adapt to the user’s inputs (Section III-A), to users that want
to perform new tasks (Section III-B), and to changes in the
environment (Section III-C). We conduct a user study with
12 participants who control a simulated 7-DoF Jaco robotic
arm using gaze (see Figure 2). The interface receives 128-
dimensional feature vectors that represent the user’s webcam
image inputs xt, and outputs 7-dimensional joint torques
as actions at. The users perform tasks in three simulated
manipulation domains implemented with the PyBullet real-
time physics simulator [44] using assets from Assistive
Gym [45]: flipping light switches, opening a shelf to reach
objects inside, and rotating a valve.

A. Adapting to Distributional Shift in Gaze Inputs

In this experiment, we aim to test ASHA’s ability to
improve over time by learning from user feedback. We
compare to a non-adaptive baseline interface that is initially
calibrated via supervised learning, but does not adapt during

ASHA improves performance
for these users

ASHA performs worse
than the baseline

for these users

Fig. 3: Each circle represents the success rate for one participant,
averaged over 50 online episodes (11 minutes).

deployment (analogous to the prior work discussed in Section
I). To train this baseline interface, we collect paired data by
showing a small number of pre-recorded videos of the robot
autonomously performing tasks to the user, and recording
the user’s passive gaze inputs as they watch the videos. We
show 2 videos per task in each domain, totalling 6 videos in
switch, 8 in bottle, and 8 in valve. We then train the baseline’s
input encoder f inptθ0

on the objective in Equation 3, treating
the paired data as a set of successful trajectories D. We refer
to this supervised learning procedure as ‘calibration’. Note
that this implicitly assumes that the user’s passive inputs are
equivalent to their active control inputs, which is often not the
case in practice [46], [47]. To improve the initial performance
and sample efficiency of our method, we initialize ASHA’s
input encoder f inptθ with the calibrated baseline parameters
θ0, and initialize ASHA’s replay buffer with the same paired
data that was used to calibrate the baseline. We measure the
online performance of both methods by asking the user to
complete particular tasks (e.g., flipping the switch indicated
in blue), and computing the success rate of the user’s first
attempt at each task (including subsequent attempts would
introduce selection effects for difficult tasks). We calibrate
and evaluate on the same distribution of tasks: in the switch
domain, a uniform distribution over flipping one of the three
switches in the middle; and in the bottle domain, a uniform
distribution over reaching one of the two bottles. To establish
a lower bound on performance, we also compare to a baseline
that randomly samples a latent z and executes the policy
gφ(at|st, z), without taking any user input.

The results in Figure 3 show that ASHA improves the
success rates of the majority of users, relative to the non-
adaptive baseline. ASHA initially performs the same as the
non-adaptive baseline, executing coherent but undesirable
behaviors like moving toward the wrong target, then begins
to outperform the baseline after 20 online episodes of RL.
One potential explanation for the gap between ASHA and the
non-adaptive baseline is that most users have a substantial
distribution mismatch between passive and active inputs, and
that ASHA helps those users by fine-tuning on active inputs
instead of only initially calibrating on passive inputs. Another

Fig. 4: Shift in Task Distribution or Environment

(a) (b)

possibility is that ASHA adapts to changes in ambient
lighting or head position over time, while the non-adaptive
baseline performs increasingly worse over time. We ran a
one-way repeated measures ANOVA on the success rates
from the baseline and ASHA conditions, with the presence
of ASHA as a factor, and found that f(1, 11) = 8.26, p < .05
in the switch domain, and f(1, 11) = 7.28, p < .05 in
the bottle domain. Subjective evaluations corroborate these
results: users reported feeling more in control of the robot
with ASHA compared to the baseline.

B. Learning to Perform the User’s Desired Tasks

The previous experiment showed that ASHA can adapt
to distributional shift in the user’s gaze input. In this next
experiment, we show that ASHA can also adapt to individual
differences in the user’s desired task distribution. In the
switch domain in particular, we calibrate the input encoder
on paired data generated from one distribution of tasks – a
uniform distribution over the 2nd and 3rd switches from the
left – then evaluate online on a different distribution of tasks
– a uniform distribution over the 2nd, 3rd, and 4th switches
from the left. This is challenging, since examples of the 4th
switch being pressed are not included in the calibration data.
RL offers a natural solution to this problem by fine-tuning
the model on the user’s online attempts to perform new tasks.
The results in Figure 4a show that ASHA can indeed adapt
to the new task distribution, substantially improving upon its
initial success rate by the end of the online training period.

C. Adapting to a Changing Environment

Adaptation is useful, not only because the user’s input
might drift or their desired tasks might be novel relative to
the training tasks, but also because the environment may
have changed since the interface was previously calibrated.
RL again offers a natural solution to this problem by incor-
porating new experiences into its replay memory as the user
interacts with their changing environment. To illustrate this
idea, we run an experiment in the bottle domain in which we
calibrate on paired data where the sliding door never covers
the desired bottle, then evaluate online in scenarios where
the sliding door may randomly cover the desired bottle.
Figure 4b shows that ASHA adapts to the new environmental
conditions, increasing the success rate over time.

TABLE I: Ablation Experiments

Switch Bottle

Random Latent (Baseline) 0.19± 0.02 0.44± 0.02
Non-Adaptive (Baseline) 0.50± 0.05 0.53± 0.02
ASHA (Ours) 0.83± 0.02 0.79± 0.03
ASHA w/ Det. Input Enc. (Q1) 0.70± 0.03 0.73± 0.02
ASHA w/ Det. Pre-train Enc. (Q2) 0.66± 0.06 0.46± 0.03
SAC from Scratch (Q3) 0.00± 0.00 0.00± 0.00
ASHA w/o Failure Relabeling (Q4) 0.54± 0.03 0.55± 0.02
ASHA w/ Latent Regression (Q5) 0.41± 0.04 0.57± 0.02

Success rates across 100 episodes and 10 random seeds

IV. SIMULATION EXPERIMENTS

A. Ablation Study

To run ablation experiments at a scale that would be im-
practical in a user study, we simulate user input x ∈ R3 as the
3D position of the target switch or bottle with i.i.d. isotropic
Gaussian noise added at each timestep. We seek to answer
the following questions. Q1: Does sampling from a stochastic
input encoder f inptθ improve exploration, relative to a deter-
ministic encoder? Q2: Does pre-training with a VIB improve
downstream performance during human-in-the-loop learning,
relative to pre-training without a VIB? Q3: Does pre-training
the latent-conditioned policy gφ speed up human-in-the-loop
learning, relative to end-to-end training the interface from
scratch online? Q4: Does relabeling failures speed up human-
in-the-loop learning, relative to ignoring failures and only
training on successes? Q5: Does regressing onto the optimal
policy in Equation 3 perform better than regressing onto
sampled latents that led to a success? The results in Table I
show that all the ablated variants of ASHA perform worse
than the full ASHA method, suggesting that sampling from
a stochastic input encoder f inptθ improves exploration (Q1),
pre-training with a VIB and reusing the pre-trained latent-
conditioned policy gφ speed up downstream learning (Q2,
Q3), relabeling failures makes human-in-the-loop learning
more efficient (Q4), and regressing onto an optimal policy
is more effective than regressing onto sampled latents (Q5).

B. Demonstration on Continuous Task Spaces

The switch and bottle environments tested in the previous
experiments have discrete task spaces: the user either wants
to flip one of five switches, or reach one of two bottles.
However, ASHA can also effectively assist users who have
continuous task spaces. To demonstrate this capability, we
ran experiments with simulated users and three expert
human users who rotate a valve to a desired target angle θ ∼
Unif(0, 2π) – i.e., a continuous, 1D task space (see Figure
2c). In addition to the expert human input, we tested various
types of simulated user inputs, including static inputs that
noisily encode the target angle, dynamic inputs that noisily
encode subgoals on a path to the goal state, and directional
inputs that noisily indicate whether to rotate clockwise,
counter-clockwise, or remain. The results in Figure 5a show
that ASHA learns to perform the desired task with an 80%

Fig. 5: Continuous Task Spaces and Structured User Inputs

(a) (b)

success rate when an expert human provides input (pink), a
90% success rate when we simulate user input that is static
and simple to decode (orange), and performs substantially
better than a random-latent baseline policy (red) when we
simulate user input that encodes nearby subgoals (blue) or
desired direction of rotation (gray).

C. Demonstration on Structured User Inputs

This paper focuses on the problem of interpreting raw user
inputs like webcam images as commands. However, ASHA
can also be used to assist users who already have access to a
direct teleoperation interface for translating raw user inputs
into robot actions, but still require help to perform their
desired tasks. To illustrate this capability, we ran experiments
with simulated users who push a puck on a table to a desired
target position, which is sampled uniformly at random from a
continuous, 2D task space (see Figure 2d). We simulated user
inputs by training an oracle policy to perform the pushing
task, then adding lag to the oracle actions, which models
real-world conditions like network latency – as a result, the
user inputs to ASHA are (suboptimal) 7-dimensional joint
torques. The results in Figure 5b show that, when the user’s
input is laggy, ASHA (orange) achieves substantially higher
success rates than the direct teleop interface alone (gray),
eventually reaching the performance of a hypothetical direct
teleop interface that receives user input without lag (green).

V. DISCUSSION

We presented a system that efficiently trains an adaptive
interface through RL from sparse user feedback. Our user
studies in three simulated robotic manipulation domains
show that, in under 10 minutes of online learning, our method
can adapt to distributional shift in webcam inputs, tasks, and
environments. One limitation of our method is that it assumes
the ability to sample pre-training tasks and accompanying
reward functions (see Section II-A). Future work could use
a self-supervised RL algorithm to discover a latent skill
space without a pre-determined distribution of tasks [48]–
[50]. Despite this limitation, ASHA illustrates how RL can
provide a general mechanism for efficiently adapting user
interfaces to individual needs; not only for assistive robotic
teleoperation, but also potentially for other domains, such as
brain-computer interfaces for speech decoding [51], [52].

VI. ACKNOWLEDGEMENTS

Thanks to members of the InterACT and RAIL labs at UC
Berkeley for feedback on this project. This work was sup-
ported by NVIDIA Graduate Fellowship, Berkeley Existen-
tial Risk Initiative, AFOSR FA9550-17-1-0308, Weill Neu-
rohub, NSF CAREER, CIFAR, Office of Naval Research,
Army Research Office, ARL DCIST CRA W911NF-17-2-
0181, the National Science Foundation under IIS-1651843,
and GPU computing resources from NVIDIA.

REFERENCES

[1] Hyun K Kim, J Biggs, W Schloerb, M Carmena, Mikhail A Lebedev,
Miguel AL Nicolelis, and Mandayam A Srinivasan. Continuous shared
control for stabilizing reaching and grasping with brain-machine
interfaces. IEEE Transactions on Biomedical Engineering, 2006.

[2] David P McMullen, Guy Hotson, Kapil D Katyal, Brock A Wester,
Matthew S Fifer, Timothy G McGee, Andrew Harris, Matthew S
Johannes, R Jacob Vogelstein, Alan D Ravitz, et al. Demonstration
of a semi-autonomous hybrid brain–machine interface using human
intracranial EEG, eye tracking, and computer vision to control a
robotic upper limb prosthetic. IEEE Transactions on Neural Systems
and Rehabilitation Engineering, 2013.

[3] Tom Carlson and Yiannis Demiris. Collaborative control for a robotic
wheelchair: evaluation of performance, attention, and workload. IEEE
Transactions on Systems, Man, and Cybernetics, 2012.

[4] Brenna D Argall. Modular and adaptive wheelchair automation. In
Experimental Robotics, 2016.

[5] Shervin Javdani. Acting under Uncertainty for Information Gathering
and Shared Autonomy. PhD thesis, Carnegie Mellon University, 2017.

[6] Katie Z Zhuang, Nicolas Sommer, Vincent Mendez, Saurav Aryan,
Emanuele Formento, Edoardo D’Anna, Fiorenzo Artoni, Francesco
Petrini, Giuseppe Granata, Giovanni Cannaviello, et al. Shared
human–robot proportional control of a dexterous myoelectric pros-
thesis. Nature Machine Intelligence, 2019.

[7] Zeungnam Bien, Myung-Jin Chung, Pyung-Hun Chang, Dong-Soo
Kwon, Dae-Jin Kim, Jeong-Su Han, Jae-Hean Kim, Do-Hyung Kim,
Hyung-Soon Park, Sang-Hoon Kang, et al. Integration of a rehabili-
tation robotic system (KARES II) with human-friendly man-machine
interaction units. Autonomous Robots, 2004.

[8] Reuben M Aronson, Thiago Santini, Thomas C Kübler, Enkelejda
Kasneci, Siddhartha Srinivasa, and Henny Admoni. Eye-hand behavior
in human-robot shared manipulation. In IEEE Conference on Human-
Robot Interaction, 2018.

[9] Katharina Muelling, Arun Venkatraman, Jean-Sebastien Valois, John
Downey, Jeffrey Weiss, Shervin Javdani, Martial Hebert, Andrew B
Schwartz, Jennifer L Collinger, and J Andrew Bagnell. Autonomy
infused teleoperation with application to BCI manipulation. arXiv
preprint arXiv:1503.05451, 2015.

[10] Alexander Broad, Todd David Murphey, and Brenna Dee Argall.
Learning models for shared control of human-machine systems with
unknown dynamics. In Robotics: Science and Systems, 2017.

[11] Siddharth Reddy, Anca D Dragan, and Sergey Levine. Shared
autonomy via deep reinforcement learning. arXiv preprint
arXiv:1802.01744, 2018.

[12] Charles Schaff and Matthew R Walter. Residual policy learning for
shared autonomy. arXiv preprint arXiv:2004.05097, 2020.

[13] Yuqing Du, Stas Tiomkin, Emre Kiciman, Daniel Polani, Pieter
Abbeel, and Anca Dragan. AvE: Assistance via empowerment. arXiv
preprint arXiv:2006.14796, 2020.

[14] Hong Jun Jeon, Dylan P Losey, and Dorsa Sadigh. Shared autonomy
with learned latent actions. arXiv preprint arXiv:2005.03210, 2020.

[15] Kris Hauser. Recognition, prediction, and planning for assisted
teleoperation of freeform tasks. Autonomous Robots, 2013.

[16] Shervin Javdani, Siddhartha S Srinivasa, and J Andrew Bag-
nell. Shared autonomy via hindsight optimization. arXiv preprint
arXiv:1503.07619, 2015.

[17] Claudia Pérez-D’Arpino and Julie A Shah. Fast target prediction
of human reaching motion for cooperative human-robot manipulation
tasks using time series classification. In IEEE International Conference
on Robotics and Automation, 2015.

[18] Hema S Koppula and Ashutosh Saxena. Anticipating human activities
using object affordances for reactive robotic response. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 2016.

[19] Katharina Muelling, Arun Venkatraman, Jean-Sebastien Valois, John E
Downey, Jeffrey Weiss, Shervin Javdani, Martial Hebert, Andrew B
Schwartz, Jennifer L Collinger, and J Andrew Bagnell. Autonomy
infused teleoperation with application to brain computer interface
controlled manipulation. Autonomous Robots, 2017.

[20] Vikash Gilja, Paul Nuyujukian, Cindy A Chestek, John P Cunningham,
M Yu Byron, Joline M Fan, Mark M Churchland, Matthew T Kaufman,
Jonathan C Kao, Stephen I Ryu, et al. A high-performance neural
prosthesis enabled by control algorithm design. Nature neuroscience,
2012.

[21] Siddharth Dangi, Amy L Orsborn, Helene G Moorman, and Jose M
Carmena. Design and analysis of closed-loop decoder adaptation
algorithms for brain-machine interfaces. Neural computation, 2013.

[22] Siddharth Dangi, Suraj Gowda, Helene G Moorman, Amy L Orsborn,
Kelvin So, Maryam Shanechi, and Jose M Carmena. Continuous
closed-loop decoder adaptation with a recursive maximum likelihood
algorithm allows for rapid performance acquisition in brain-machine
interfaces. Neural computation, 2014.

[23] Josh Merel, David Carlson, Liam Paninski, and John P Cunningham.
Neuroprosthetic decoder training as imitation learning. arXiv preprint
arXiv:1511.04156, 2015.

[24] Sida I Wang, Percy Liang, and Christopher D Manning. Learning
language games through interaction. arXiv preprint arXiv:1606.02447,
2016.

[25] Gopala K Anumanchipalli, Josh Chartier, and Edward F Chang.
Speech synthesis from neural decoding of spoken sentences. Nature,
2019.

[26] Siddharth Karamcheti, Dorsa Sadigh, and Percy Liang. Learning
adaptive language interfaces through decomposition. arXiv preprint
arXiv:2010.05190, 2020.

[27] David Gaddy and Dan Klein. Digital voicing of silent speech. arXiv
preprint arXiv:2010.02960, 2020.

[28] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. 2018.

[29] Céline Ray, Francesco Mondada, and Roland Siegwart. What do
people expect from robots? In IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2008.

[30] Marcus Mast, Michael Burmester, Katja Krüger, Sascha Fatikow,
Georg Arbeiter, Birgit Graf, Gernot Kronreif, Lucia Pigini, David
Facal, and Renxi Qiu. User-centered design of a dynamic-autonomy
remote interaction concept for manipulation-capable robots to assist
elderly people in the home. Journal of Human-Robot Interaction,
2012.

[31] Laura Petrich, Jun Jin, Masood Dehghan, and Martin Jagersand. Assis-
tive arm and hand manipulation: How does current research intersect
with actual healthcare needs? arXiv preprint arXiv:2101.02750, 2021.

[32] James MacGlashan, Mark K Ho, Robert Loftin, Bei Peng, David
Roberts, Matthew E Taylor, and Michael L Littman. Interactive
learning from policy-dependent human feedback. arXiv preprint
arXiv:1701.06049, 2017.

[33] Dilip Arumugam, Jun Ki Lee, Sophie Saskin, and Michael L Littman.
Deep reinforcement learning from policy-dependent human feedback.
arXiv preprint arXiv:1902.04257, 2019.

[34] W Bradley Knox and Peter Stone. Interactively shaping agents via
human reinforcement: The TAMER framework. In International
Conference on Knowledge Capture, 2009.

[35] Garrett Warnell, Nicholas Waytowich, Vernon Lawhern, and Peter
Stone. Deep TAMER: Interactive agent shaping in high-dimensional
state spaces. arXiv preprint arXiv:1709.10163, 2017.

[36] Dorsa Sadigh, Anca D Dragan, Shankar Sastry, and Sanjit A Seshia.
Active preference-based learning of reward functions. In Robotics:
Science and Systems, 2017.

[37] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane
Legg, and Dario Amodei. Deep reinforcement learning from human
preferences. In Neural Information Processing Systems, 2017.

[38] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassan-
dra. Planning and acting in partially observable stochastic domains.
Artificial Intelligence, 1998.

[39] Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess,
and Martin Riedmiller. Learning an embedding space for transferable
robot skills. In International Conference on Learning Representations,
2018.

[40] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine.
Soft actor-critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. In International Conference on
Machine Learning, 2018.

[41] Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin
Murphy. Deep variational information bottleneck. arXiv preprint
arXiv:1612.00410, 2016.

[42] Alessandro Achille and Stefano Soatto. Information dropout: Learning
optimal representations through noisy computation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2018.

[43] Jensen Gao, Siddharth Reddy, Glen Berseth, Nicholas Hardy,
Nikhilesh Natraj, Karunesh Ganguly, Anca Dragan, and Sergey
Levine. X2T: Training an x-to-text typing interface with online
learning from user feedback. In International Conference on Learning
Representations, 2021.

[44] Erwin Coumans and Yunfei Bai. PyBullet, a Python module for
physics simulation for games, robotics and machine learning. 2016.

[45] Zackory Erickson, Vamsee Gangaram, Ariel Kapusta, C Karen Liu,
and Charles C Kemp. Assistive gym: A physics simulation framework
for assistive robotics. In IEEE International Conference on Robotics
and Automation, 2020.

[46] John P Cunningham, Paul Nuyujukian, Vikash Gilja, Cindy A Chestek,
Stephen I Ryu, and Krishna V Shenoy. A closed-loop human
simulator for investigating the role of feedback control in brain-
machine interfaces. Journal of Neurophysiology, 2011.

[47] Francis R Willett, Daniel R Young, Brian A Murphy, William D
Memberg, Christine H Blabe, Chethan Pandarinath, Sergey D Stavisky,
Paymon Rezaii, Jad Saab, Benjamin L Walter, et al. Principled
BCI decoder design and parameter selection using a feedback control
model. Scientific Reports, 2019.

[48] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey
Levine. Diversity is all you need: Learning skills without a reward
function. arXiv preprint arXiv:1802.06070, 2018.

[49] Ashvin Nair, Shikhar Bahl, Alexander Khazatsky, Vitchyr Pong, Glen
Berseth, and Sergey Levine. Contextual imagined goals for self-
supervised robotic learning. In Conference on Robot Learning, 2020.

[50] Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan
Tompson, Sergey Levine, and Pierre Sermanet. Learning latent plans
from play. In Conference on Robot Learning, 2020.

[51] Frank H Guenther, Jonathan S Brumberg, E Joseph Wright, Alfonso
Nieto-Castanon, Jason A Tourville, Mikhail Panko, Robert Law,
Steven A Siebert, Jess L Bartels, Dinal S Andreasen, et al. A wireless
brain-machine interface for real-time speech synthesis. PloS one, 2009.

[52] Florent Bocquelet, Thomas Hueber, Laurent Girin, Christophe Savari-
aux, and Blaise Yvert. Real-time control of an articulatory-based
speech synthesizer for brain computer interfaces. PLoS Computational
Biology, 2016.

[53] Amy McGovern, Doina Precup, Balaraman Ravindran, Satinder Singh,
and Richard S Sutton. Hierarchical optimal control of MDPs. 1998.

[54] Ronald Parr and Stuart J Russell. Reinforcement learning with
hierarchies of machines. In Neural Information Processing Systems,
1998.

[55] Andrew Levy, Robert Platt, and Kate Saenko. Hierarchical actor-critic.
arXiv preprint arXiv:1712.00948, 2017.

[56] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine.
Data-efficient hierarchical reinforcement learning. In Neural Informa-
tion Processing Systems, 2018.

[57] Alexander Li, Carlos Florensa, Ignasi Clavera, and Pieter Abbeel.
Sub-policy adaptation for hierarchical reinforcement learning. In
International Conference on Learning Representations, 2020.

[58] Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Near-
optimal representation learning for hierarchical reinforcement learning.
arXiv preprint arXiv:1810.01257, 2018.

[59] Jonathon W Sensinger, Blair A Lock, and Todd A Kuiken. Adaptive
pattern recognition of myoelectric signals: exploration of conceptual
framework and practical algorithms. IEEE Transactions on Neural
Systems and Rehabilitation Engineering, 2009.

[60] Patrick M Pilarski, Michael R Dawson, Thomas Degris, Farbod
Fahimi, Jason P Carey, and Richard S Sutton. Online human training of
a myoelectric prosthesis controller via actor-critic reinforcement learn-
ing. In IEEE International Conference on Rehabilitation Robotics,
2011.

[61] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction
of imitation learning and structured prediction to no-regret online

learning. In International Conference on Artificial Intelligence and
Statistics, 2011.

[62] Kyle Krafka, Aditya Khosla, Petr Kellnhofer, Harini Kannan, Suchen-
dra Bhandarkar, Wojciech Matusik, and Antonio Torralba. Eye
tracking for everyone. In IEEE Conference on Computer Vision and
Pattern Recognition, 2016.

[63] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[64] Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine.
Accelerating online reinforcement learning with offline datasets. arXiv
preprint arXiv:2006.09359, 2020.

[65] Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre
Quillen. Efficient off-policy meta-reinforcement learning via prob-
abilistic context variables. In International Conference on Machine
Learning, 2019.

APPENDIX

A. Additional Related Work

ASHA’s use of a pre-training phase to learn a low-
level policy gφ that accelerates downstream learning of a
high-level user interface f inptθ resembles hierarchical RL
methods [53], [54], which generally aim to improve ex-
ploration and credit assignment by dividing the original
Markov decision process (MDP) into simpler high- and low-
level MDPs. Recent work in this area focuses on solving
the divided MDPs concurrently [55]–[57] and combining
the results [58]. Our problem setting and assumptions are
markedly different, in that the engineered reward function
used to pre-train the low-level policy in phase 1 of ASHA
may differ substantially from the user-provided reward that
is used to train the interface online in phase 2, while standard
hierarchical methods assume that these two reward functions
are equivalent.

Prior work on myoelectric interfaces for prosthetic limb
control explores unsupervised learning [59] and RL [60]
methods for online adaptation to the user’s EMG signals,
but only evaluates on simple motion-tracking tasks with
small, discrete state spaces, whereas our work focuses on
more complex manipulation tasks with large, continuous
state spaces (see Figure 2 and Appendix B.3).

ASHA’s approach to relabeling trajectories with an optimal
policy (see line 16 in Algorithm 1) is analogous to the
DAgger imitation learning algorithm, which relabels on-
policy trajectories of an imitation policy with expert action
labels [61].

B. Implementation Details

1) Timeouts: To ensure that the user studies do not get
stalled on a single task, if the user does not succeed at a given
task after 5 episodes of attempts, we ‘timeout’ and ask them
to move on to a new task. We do not learn from these 5
episodes in our method, since we do not have a success that
we can use to compute the optimal policy in hindsight (see
Section II-B). Across all methods tested and all experimental
conditions in the user studies, timeouts occurred in 6% of
tasks in the bottle domain, and 20% of tasks in the switch
domain.

2) Simulator Setup for Switch and Bottle Domains:
We setup our switch and bottle domains using assets from
Assistive Gym [45]. The sizes of the simulated Jaco arm and
wheelchair are proportional to those of their real-world coun-
terparts. In the switch domain, the switches are placed 0.22
units of distance apart horizontally. The horizontal position
of the switches vary uniformly at random within an interval
of 0.3 units, but all switches share the same positional noise
(i.e., all switches move together). The distance between the
user and the wall varies uniformly at random within an
interval of 0.2 units during the pre-training and calibration
phases – during online evaluation, it only varies within half
that range. The initial arm end-effector position varies within
a uniform box of size (1, 0.2, 0.2). In the bottle domain, the
bottles are placed 0.3 units of distance apart horizontally. The

horizontal position of the table varies uniformly at random
within an interval of 0.4 units. The bottles always maintain
the same relative position with respect to the table. The initial
arm end-effector position varies uniformly at random within
a box of size (0.8, 0.2, 0.2). Due to the noise added to the
positions of switches and bottles at the beginning of each
episode, the positions for different switches and bottles can
overlap across episodes (e.g., switch 1 may be located very
close to the previous position of switch 2 in a past episode).
While the arm is reset to its initial position at the start of each
episode, regardless of the success or failure of the previous
episode, the other conditions of the environment (e.g., the
positions of the switches, table, or wall) are only reset after
a successful episode or a timeout. The arm is reset by first
sampling a 3D position, then solving for the joint positions
of the arm using an inverse kinematics function.

The environments use a frame skip of 5 steps, and a
maximum episode length of 200 steps (approximately 13
seconds of wall-clock time).

3) Representation of States, Actions, Task Specifications,
and Latent Embeddings: In all domains, the low-level action
a ∈ R7 consists of 7 joint forces for the Jaco arm. Each
action dimension is clipped to (-0.25, 0.25) before being
executed in the simulator. In the switch domain, the state
s ∈ R48 consists of the 7 joint positions of the arm, the 3D
position and 4D orientation of the end effector, and the 3D
position and 1D angle of each of the 5 switches. In the bottle
domain, the state s ∈ R37 consists of the 7 joint positions
of the arm, the 3D position and 4D orientation of the end
effector, the 3D position of each of the 2 bottles, and the 3D
position of door handle. We set each specification τ spec ∈ R3

to be the 3D position of the target switch or bottle. In both
domains, we set the dimensionality of the latent embedding
space to d = 3.

4) Recording the User’s Eye Gaze: With a standard
webcam, we record a 224x224x3 segmented image of the
user’s face, 224x224x3 image of each of the user’s eyes, and
a 25x25 binary grid that characterizes the overall position of
the face in the webcam image, then feed these as input to
a pre-trained iTracker model [62] (see Figure 2c). We treat
the 128-dimensional activations of the last linear layer in
the pre-trained iTracker neural network as the user’s control
input x ∈ R128. Gaze is recorded by having an asynchronous
thread that takes the webcam image, segments it, feeds it into
the iTracker network, then extracts the features, sets it equal
to the most recent features, and terminates. On every step of
the environment simulator, we restart the gaze update thread
if it has terminated, then pull the most recent gaze features
and treat them as the user input xt for that timestep.

5) Network Architecture and Optimization: In all phases
(i.e., pre-training, calibration, and online learning), we use
the Adam optimizer [63] with a batch size of 256 to train our
models. We use the same network architecture to represent
all encoders f specψ , f inptθ0

, and f inptθ : a feedforward network
with ReLU activations and a single hidden layer of 64 units.

In all phases, we set the regularization constant β for the
VIB (e.g., see Equation 3) to 0.01.

In the pre-training phase, we run SAC with default hy-
perparameters: a 2-layer, 256-unit feedforward network to
represent both the policy and Q-function, a learning rate
of 3 · 10−4, a reward scale of 1, automatic entropy tuning
with a heuristic of setting the target entropy to the negative
dimensionality of the action space, a target Q-function update
period of 1, Polyack update τ set to 5 · 10−3, epochs of
1000 environment steps followed by 1000 training steps,
1000 steps before training starts, and a replay buffer size
of 5 · 105 in the switch domain and 2 · 107 in the bottle
domain. We pre-train for 1000 epochs in the switch domain,
and for 3150 epochs in the bottle domain. In the bottle
domain, we initialize the pre-training replay buffer with 5000
demonstrations obtained from a scripted agent. When we
execute the pre-training policy πspec

ψ,φ , we feed the expected
value of the specification encoder output z to the latent-
conditioned policy gφ, instead of sampling from the posterior
of the encoder.

During the online learning phase, we set the learning rate
to 5 ·10−4, perform 1000 gradient updates on the calibration
data (which is typically sufficient for convergence), keep the
calibration data in the replay buffer during online learning,
perform 100 gradient updates after each successful episode
(which is typically sufficient for convergence), and do not
limit the size of the replay buffer (i.e., never discard old
data).

We use the same random seeds for each user, and use
a different random seed for each method and experimental
condition within a given user. We use 10 different random
seeds for each ablation experiment, and use the same 10
seeds across the ablations.

We set the optimal policy πspec
ψ,φ used in Equation 3 during

the online learning phase to be deterministic. Implicitly
assuming that the interface πinpt

θ,φ has some fixed, diagonal
covariance Iσ2, this enables us to simplify the KL divergence
loss between the two policies πspec

ψ,φ and πinpt
θ,φ in Equation

3 to the mean-squared error loss between the mean actions
outputted by both policies.

We do not use a recurrent input encoder f inptθ (z|s0:t,x0:t),
and instead use a feedforward encoder f inptθ (z|st,xt) that
operates on only the most recent state st and user input xt.

To simplify the optimization of Equation 3, we do not
integrate over the posterior distribution of latents z when
computing the optimal policy πspec

ψ,φ and interface πinpt
θ,φ , and

instead only feed the expected value of z to the latent-
conditioned policy gφ – i.e., we represent the optimal policy
as gφ(at|st,Ez∼fspec

ψ (z|τspec)[z]) (instead of Equation 1), and
the interface as gφ(at|st,Ez∼f inpt

θ (z|s0:t,x0:t)
[z]) (instead of

Equation 2).
6) Pre-Training Tasks: In the switch domain, we have

5 pre-training tasks (one for each switch on the wall in
Figure 2). In the bottle domain, we have 2 pre-training tasks
(one for each bottle inside the shelf in Figure 2). The pre-
training reward in the switch domain is 0 upon success,
and exp (−‖end effector pos.− target switch pos.‖−0.2)−1
otherwise. The pre-training reward in the bottle domain is
−1 + 0.5 · 1[door opened] + 0.5 · 1[bottle reached].

7) Episode Termination and User Feedback: During the
pre-training phase, episodes only end if the task is suc-
cessfully completed or the environment times out – we set
the terminal flag to true only when the task is successfully
completed. During the online learning phase, episodes also
end if the wrong task is performed (e.g., the wrong switch
is flipped).

If the episode ends in a success or in completing the wrong
task, the user’s binary feedback (provided through a button
press) is treated as the reward signal. However, when the
episode ends due to a timeout, we automatically generate a
negative feedback signal. The user’s button presses matched
the automated feedback in 98% of episodes in the user study.

8) Calibration Videos: To generate the 6 videos in the
switch domain and 8 videos in the bottle domain that are
used to calibrate the non-adaptive baseline interface and our
method (see Section III-A), we execute the pre-trained robot
policy πspec

ψ,φ . In the switch domain, we generate successful
videos for 3 different switches, with 2 episodes per switch.
In the bottle domain, we generate successful videos for 2
different bottles and 2 different settings of the door (the door
can cover either one of the 2 compartments), with 2 episodes
in each of the 4 configurations.

9) Simulated User Model Parameters: For the simulated
user input in Section IV-A, we set the standard deviation of
the Gaussian user input noise to 0.1 in the switch domain,
and 0.15 in the bottle domain.

10) Valve Rotation Experiment Details: We use a
similar pre-training procedure as the one described earlier
in Appendix B.6 for the switch and bottle domains,
except that we train for 8000 epochs, train on 50 human
demonstrations, initialize the encoder and critic networks
by running AWAC [64] on the human demonstrations for
25000 iterations, set the pre-training reward function to
exp (−5 · |diff. between current and target angle in radians|)−
1, and only terminate an episode upon reaching 200
timesteps. Each observation includes the 3D end effector
position, 4D end effector orientation, 3D end effector
velocity, 3D valve position, 2D representation of the current
valve orientation (sin and cos), 1D velocity of the valve
joint, 7D arm joint positions, and 7D arm joint velocities.
To speed up human-in-the-loop learning, our encoders
only operate on a subset of the observation features: the
3D end effector position, 2D valve orientation, and 3D
valve position. The task specification τ spec is the 2D valve
orientation. Each action consists of 7D joint torques, clipped
to [−0.25, 0.25], as in the switch and bottle domains. During
the pre-training phase, the initial valve angle is sampled
uniformly at random from [0, 2π), and the target angle
is sampled uniformly at random from the same interval
but excluding points within π

32 radians of the initial angle.
During the calibration phase, the initial angle is always
0, and 7 videos are shown to the user, where the target
angle is sampled uniformly at random from the discrete set
{π4 · k}

7
k=1. During the online learning phase, the initial

angle is always 0, and the target angle is sampled uniformly
at random from [0, 2π) but excluding points within π

16

radians of the initial angle. The user is only allowed to
end an episode when the valve angle has been within π

16
radians of the target angle for 20 consecutive steps. The
episode automatically times out after 200 steps, but the
user can still indicate a successful task completion after a
timeout. Note that the task specification for each successful
trajectory is extracted from the final state that was actually
reached – since the user only needs to be within π

16 radians
of the target to succeed, we may extract a specification that
is near, but not necessarily identical to, the ground-truth
specification. During the online learning phase, we use
a batch size of 256, where each batch consists of 128
examples from the calibration dataset and 128 examples
from the online dataset. The simulated static user input
consists of a 2D target position on a circle centered at the
valve. The simulated dynamic user input consists of a similar
2D target position, but dynamically adjusted so that it is
always at most π

8 radians from the current valve angle, and
also on the shortest arc from the current state to the target
state. The simulated directional user input are 3D one-hot
encodings for the actions {clockwise, counter-clockwise,
remain} – the remain input is generated when the current
valve angle is within π

16 radians of the target angle. All the
simulated user inputs have i.i.d. isotropic Gaussian noise
ε ∼ N (0, 0.2I) added to them at each timestep. Following
prior work on deep set encoders [65], we generate latent
embeddings using an encoder that first processes individual
(st,xt) pairs, and outputs the mean and variance of an
isotropic Gaussian for each pair. The Gaussian factors
for the most recent 10 timesteps are multiplied, and the
latent embedding for the current timestep is sampled from
this new Gaussian. During training, we sample the latent
embedding from this Gaussian. During online episodes, we
set the latent embedding to be the mean of the Gaussian.
We set the dimensionality of the latent embedding space
to d = 2. After a maximum number of 3 failed attempts
to complete the current task, we automatically timeout and
sample a new task. At the start of each episode, we add
uniform random noise of magnitude 0.1 to the horizontal
position of the valve, initialize the arm position with the
same noisy procedure described in Appendix B.2, and do
not add noise to any other state variables (e.g., the distance
to the wall).

11) Puck Pushing Experiment Details: We
pre-train for 10000 epochs without any human
demonstrations, and set the pre-training reward function to
1− βσ(α(change in distance of block position from goal +
.5 · change in distance of tool position from block), where
σ is the sigmoid function. The puck and goal positions
are initialized uniformly at random within a square of
half extent (0.25, 0.15), which is the area that the end
effector can reliably reach. The positions are constrained
to be at least 0.1 apart. The puck is a cube with a half
extent of 0.05, and is kept on the table by a gravity of
10, with mass of 0.1 and friction of 0.5. Each episode
terminates automatically when the robot pushes the puck
within 0.05 distance of the goal, or 200 timesteps expires.

Each observation consists of the 3D tool position, 4D tool
orientation, 3D block position, and 7D arm joint angles.
The task specification τ spec is the 3D position of the goal.
As in the valve domain, note that the task specification
for each successful trajectory is extracted from the final
state that was actually reached – since the user only needs
to be within 0.05 distance of the target to succeed, we
may extract a specification that is near, but not necessarily
identical to, the ground-truth specification. During the online
learning phase, we use a batch size of 256, where each
batch consists of 128 examples from the calibration dataset
and 128 examples from the online dataset. The simulated
user input is a 7D vector of arm joint torques, which is
generated using a pre-trained oracle policy. The simulated
user inputs are smoothed using an exponential moving
average with smoothing factor α = 0.99 – i.e., we set
xt ← 1

1−α (αxt−1 + (1 − α)xt). We use the same deep set
encoder architecture as in the valve domain to represent the
input encoder, and operate on the most recent 20 timesteps
of observations and user inputs. We set the dimensionality
of the latent embedding space to d = 4. As in the switch
and bottle domains, after a maximum number of 5 failed
attempts to complete the current task, we automatically
timeout and sample a new task.

C. Details of User Study

1) Experiment Design: We recruited 10 male and 2 fe-
male participants, with an average age of 21. Each participant
was provided with the rules of each domain (see Figure
6) and a short practice period of 10 episodes to familiar-
ize themselves with the simulation. Each episode took an
average of 13 seconds. Each participant completed three
phases of experiments – A, B, and C – in each of the
two domains. Before each phase in the switch domain, each
participant generated 6 episodes of calibration data; in the
bottle domain, 8 episodes. In phase A, they use the non-
adaptive baseline interface to complete 50 episodes. In phase
B, they use our method to complete 50 episodes. In phase
C in the switch domain, they use our method to complete
50 episodes in which the task distribution is intentionally
mismatched with the calibration data (see Section III-B).
In phase C in the bottle domain, they use our method to
complete 50 episodes in which the environment conditions
are intentionally mismatched with the calibration data (see
Section III-C). To control for the confounding effects of the
user learning or getting fatigued over the course of the full
study, we counterbalanced the order of the three phases (i.e.,
2 participants followed the order ABC, another 2 participants
followed BAC, etc.).

2) Subjective Evaluations and Additional Quantitative
Results: When prompted to “please describe your input
strategy”, participants responded as follows.

User 1:
Switch Domain:
After Phase A:
gaze at target switch 100% of the time, hold same
gaze throughout
After Phase B:

same as phase A
After Phase C:
same as phase A
Bottle Domain:
After Phase A:
If door needs to be opened, then stare at door and
then slide gaze to open the door once hand reaches
door. After door is opened, stare at vase. If no door
needs to be openend, just stare at vase.
After Phase B:
same as phase A
After Phase C:
same as phase A

User 2:
Switch Domain:
After Phase A:
I looked as far in the left/right direction as possible
until the system reached the target
After Phase B:
same as phase A
After Phase C:
same as phase A
Bottle Domain:
After Phase A:
I looked as far in the left/right direction as possible
until the system reached the target
After Phase B:
same as phase A
After Phase C:
I looked as far in the left/right direction as possible
until the system reached the target. I stopped looking
at the door to “pull” it once the system had grasped
the handle.

User 3:
Switch Domain:
After Phase A:
Look towards a direction I wanted the arm to move
in, then stare down the location when I wanted it to
flip.
After Phase B:
exaggerate movement when it was wrong
After Phase C:
same as A
Bottle Domain:
After Phase A:
continuous movement
After Phase B:
try to gaze relative to the arm instead of at item
After Phase C:
left blank

User 4:
Switch Domain:
After Phase A:
I looked at the target and if the arm was going in
the wrong place I compensated by looking further
in the necessary direction
After Phase B:
Same strategy as before, more compensating because
missed more often
After Phase C:
Same as before Bottle Domain:
After Phase A:
Just looked in the direction of the target, sometimes
a little bit off to side of the shelf it was on.
After Phase B:

Same as before, but more often on target
After Phase C:
Same as before

User 5:
Switch Domain:
After Phase A:
look in direction to move
After Phase B:
exaggerated looking in direction
After Phase C:
same
Bottle Domain:
After Phase A:
lok left oor right
After Phase B:
same
After Phase C:
same, sometimes looko strraright

User 6:
Switch Domain:
After Phase A:
Exaggerate look in desired direction and look at
target if robot was performing correct task
After Phase B:
Same as phase A
After Phase C:
Look at final target
Bottle Domain:
After Phase A:
Exaggerate for left side, look directly at target for
right side
After Phase B:
Same as phase A
After Phase C:
Same as phase A

User 7:
Switch Domain:
After Phase A:
When the robot is close to the goal, gaze at some
middle point between robot and goal; when robot
is faraway from goal, gaze at some point that goes
beyond the goal in the goal direction.
After Phase B:
Almost always look to the right of the goal; the
farther the goal is, the farther the gaze will be from
the goal as well.
After Phase C:
Look at a point slightly beyond the goal in the goal
direction and adjust the gaze location according to
robot behavior.
Bottle Domain:
After Phase A:
Look at a point beyond the goal in the goal direction,
as far as possible, and holding the same gaze; it
seems to be working most of the time unless the
bottles are far away from the middle.
After Phase B:
Same as phase A above.
After Phase C:
Same as phase A above.

User 8:
Switch Domain:
After Phase A:
Looked at target and exaggerated/altered gaze if

arm moved too far in one direction
After Phase B:
Same as above
After Phase C:
Same as above
Bottle Domain:
After Phase A:
Same as above
After Phase B:
Same as above
After Phase C:
left blank

User 9:
Switch Domain:
After Phase A:
I started out looking at the final target, but also
tried sweeping my gaze over the intended trajectory
and also exaggeratedly looking in the direction I
wanted the arm to go
After Phase B:
I did much the same, but when the arm seemed
to be way off the intended trajectory, I’d test out
looking in different directions to see how it would
affect the trajectory. I wasn’t sure how it was
actually affecting the trajectory
After Phase C:
I would try looking directly at the target, then
exxagerate my gaze a bit when the arm wasn’t
doing exactly what I wanted
Bottle Domain:
After Phase A:
I would look at points on the shelf that I wanted the
arm to go to, even if not the final bottle. If the bottle
was blocked, I’d look at the outer top left corner,
then middle of outer edge, then middle divider to
move the glass door. If the arm wasn’t moving
exactly in the direction I wanted, I’d exaggerate my
gaze. If it wasn’t blocked, I would look directly at
the bottle.
After Phase B:
In this phase, I mainly exaggerated my gaze in the
direction I wanted the arm to go, while relying on
peripheral vision for tellling where the robot is and
relying on the color change for telling if the episode
was over
After Phase C:
I basically had the same strategy as last time, except
I exaggerated my gaze even more. I also did the
exaggeration in the calibration phase, when I hadn’t
before.

User 10:
Switch Domain:
After Phase A:
left blank
After Phase B:
left blank
After Phase C:
left blank
Bottle Domain:
After Phase A:
left blank
After Phase B:
left blank
After Phase C:
left blank

User 11:
Switch Domain:
After Phase A:
Gazing in the far extreme direction that I wanted
the arm to move towards
After Phase B:
Gazing at the neighbor of the correct switch in the
direction I wanted the arm to move in. (I.e., if I
wanted the arm to move farther left, I gazed at the
neighbor on the left).
After Phase C:
Same as above
Bottle Domain:
After Phase A:
Gazing in the extreme direction I wanted the arm
to move in
After Phase B:
I fixed my gaze directly at the bottle I wanted the
system to grab.
After Phase C:
Same as above

User 12:
Switch Domain:
After Phase A:
I stared at the blue sphere for most of the time
and would try to correct the robot if it went to the
wrong one by exaggerating my look in a certain
direction.
After Phase B:
I started with the same strategy as in phase 1 where
I would stare at the blue sphere above the switch
until the arm went there. However, I noticed that
this only worked for the switches on the right side,
and it wouldn’t ever go to the first two switches on
the left side–this made me try to compensate for the
arm by looking more to the left but it still did not
work so I tried different corners of the screen.
After Phase C:
I started again by trying to stare at the blue sphere
and track it with my eyes. However, it seemed like
the robot had the opposite problem as phase 2.
Instead of always going for the right, it would only
go for the second switch on the left. I also tried
compensating by looking as far right as I could, but
it did not seem to affect the arm.
Bottle Domain:
After Phase A:
If the bottle was behind the glass door, I would stare
at the edge of the door and then pretend to slide it
with my eyes. Then I would stare at the blue part
of the bottle. If the bottle was not behind a door, I
looked at the bottle directly.
After Phase B:
I used a similar strategy to phase 1, where if the
bottle was behind the glass door I looked at the
edge of the glass door. Once the arm reached the
handle of the door, I panned my eyes over to the
opposite edge of the box. Once the door was fully
open, I would look at the blue part of the bottle.
After Phase C:
I used my strategy from phase 2 with some slight
modifications. I noticed that the arm would get
caught on the wrong side of the handle sometimes
after opening the door and it would close the door
again, so I would sometimes try moving my eyes up
and down to get the arm out of the way. There were
also times where the arm would open the door half

way and then it would move away from the handle,
so I tried looking at the opposite corner of the box
to keep the arm on the handle.

These responses show that users employed a variety of
different communication styles, including looking directly
at the target (users 1, 4, and 8), looking at distant parts
of the screen to indicate different targets (users 2 and 3),
exaggerating their gaze to correct the robot (users 3-6 and
8), and dynamically guiding the robot to subgoals (users 1,
2, and 7).

Thanks for taking part in this user study! Please follow these steps:

Setup before the Zoom call:
1. Download and sign this consent form
2. Download and sign this receipt for an Amazon gift card. Your claim code is [N/A for pilot].
3. Download the code here, unzip it, and cd into the folder
4. `conda create -n ashaenv python=3.7`
5. `source activate ashaenv`
6. `pip install -r requirements.txt`

a. If you run into errors installing dlib, follow the installation tips here
b. Install torch separately with

i. pip install torch==1.7.0+cpu torchvision==0.8.1+cpu torchaudio===0.7.0 -f
https://download.pytorch.org/whl/torch_stable.html

7. `pip install -e rlkit/`
8. `pip install -e image/`
9. `pip install -e assistive-gym/`

Setup during the Zoom call:
10. Place your laptop on a steady surface and do not move it during the study.
11. Make sure that your face can be clearly seen in the center of the webcam frame (i.e.

make sure lighting and laptop placement is good).
12. Start screen sharing and recording the video call
13. Open the survey spreadsheet

Instructions:
● DO NOT touch your mouse at any time during an experiment, either during calibration or

online episodes. Scrolling on your mouse may cause the camera angle in the
visualization to change, which is not allowed

● Calibration:
○ Each experiment will begin with a set of calibration episodes, where you will

observe a robotic arm perform different tasks.
○ At the beginning of each calibration episode, you will be presented with a still

visualization of the robotic arm, and the environment in which it needs to perform
the task.

○ You should first identify the situation in the scene, what the goal is, and imagine
what actions the robot should take to achieve the goal. Some target locations will
be indicated in the visualization, in some way specific to the task.

○ Once you have identified the desired goal, press the “SPACE” button on your
keyboard to start the episode, which will cause the arm to begin moving.

○ You will not be in control of the robotic arm, but please direct your eye gaze as if
you were guiding the arm to perform the task correctly.

○ Your method of guiding the arm can be
■ Looking at the next location the arm needs to be at to accomplish the task

1

■ Looking at the final location the arm needs to be at to accomplish the task
■ Looking in the general direction of where you want the arm to go to

accomplish the task
■ Any other strategy you find natural to guide the robot
■ Any combination of different strategies

○ During calibration episodes, the robot will usually successfully complete the task,
but not always.

○ When the episode is over, either via a successful completion of the task or after a
timeout, you will immediately be presented with the next episode, where you will
again attempt to guide the arm using your gaze after pressing “SPACE” on your
keyboard to start the next episode.

○ Calibration episodes will have an orange background. Once the background of
the environment is no longer orange, the calibration phase is complete. And an
example of an episode can be found here.

● Online
○ During the online phase of the experiment, your gaze will now influence the

movement of the robotic arm, and you will attempt to actively use your gaze to
guide the robotic arm to perform the task.

○ Each episode during the online phase will be indicated with a gray background,
as opposed to the orange background during calibration episodes.

○ Each episode will begin by presenting you with a still visualization of the robotic
arm, and the environment in which it needs to perform the task.

○ Once you have identified where the arm needs to move next to perform the task,
press the “SPACE” button on your keyboard to start the episode, which will cause
the arm to begin moving under the influence of your gaze.

○ Throughout different episodes during the online phase, you are encouraged to try
out whatever different gaze strategies you think will work best to successfully
guide the arm to complete the task.

○ It may help to consider what the robot is doing/has been doing and adjusting your
gaze strategy accordingly.

○ Each episode will end with either the successful completion of the task, failure to
complete the task by accomplishing a different task, or failure to complete the
task due to a timeout after about 20 seconds.

○ Successes will be indicated by a green indicator at the goal location, and failures
will be indicated by a red indicator at the goal location.

○ After the end of an episode due to the completion of a task (may not have been
the correct one), the environment will freeze. Then, press “ENTER” to indicate
the correct task was performed, or “SHIFT” to indicate the wrong task was
performed. Afterwards, the next episode will begin.

○ After the end of an episode due to a timeout, the environment will continue to the
next episode after a brief pause, without the need for keyboard input.

○ After a successful episode, or 5 consecutive failed episodes, the conditions of the
environment will be randomized and the next task to be performed will be
randomly selected.

2

○ Otherwise, the next episode will have the same environment conditions with the
same task (except the initial position of the robotic arm will be different), and you
will be asked to attempt to perform the same task again.

Environment 1: Light Switch
● In the light switch environment, there are 5 light switches on a wall, all in the “on”

configuration.
● The switches are always spaced apart the same distance, but each episode, they will

appear centered in different locations, and the distance to the wall will vary.
● The task to be performed is flipping one of the middle 3 switches to the “off” position. To

succeed, only the target switch should be flipped. Flipping any of the other switches will
result in a failure.

● The target switch will be indicated by a dark blue sphere located directly over it.
● The robotic arm may sometimes block some of the switches, including the target switch.

If this happens and you cannot see the indicator, try your best to deduce which is the
target switch by noting the visible switches that do not have the indicator.

● Example of the beginning of a calibration episode. The switch with the blue sphere
above is the target switch.

3

● Example of the beginning of an online episode. The switch with the blue sphere above is
the target switch.

● Example of a successful online episode. The target switch, indicated by the green
sphere, was correctly flipped.

4

● Example of a failed online episode. The target switch, indicated by the red sphere, was
not flipped, and the switch to its left was incorrectly flipped.

Phase 0 (practice):
● python image/rl/scripts/sac_experiment_s2-calibrate.py --env_name

OneSwitch --mode no_online --epochs 10

Phase 1:
● python image/rl/scripts/sac_experiment_s2-calibrate.py --env_name

OneSwitch --mode default

● Fill out “After Phase 1” in survey spreadsheet
Phase 2:

● python image/rl/scripts/sac_experiment_s2-calibrate.py --env_name
OneSwitch --mode no_online

● Fill out “After Phase 2” in survey spreadsheet
Phase 3:

○ python image/rl/scripts/sac_experiment_s2-calibrate.py --env_name
OneSwitch --mode no_right

○ Fill out “After Phase 3” in survey spreadsheet

Environment 2: Bottle
● In the bottle environment, there is a shelf with two compartments, each with a bottle

inside. There is also a movable sliding door in front of compartments, which may block
the bottles.

● Each episode, the shelf will appear in different locations.
● The task to be performed is reaching one of the bottles with the robotic arm, moving the

sliding door out of the way if necessary to reach the target bottle. Reaching the other
bottle will result in a failure.

● The target bottle will be indicated by a dark blue sphere.

5

● Example of the beginning of a calibration episode. The right bottle with the blue sphere
is the target bottle. The sliding door is covering the target bottle, and it will need to be
moved to the left first.

● Example of the beginning of an online episode. The bottle with the blue sphere is the
target bottle. The sliding door is not covering the target bottle, so the arm may go directly
to it.

6

● Example of a successful online episode. The target bottle, indicated by the green
sphere, was correctly reached.

● Example of a failed online episode. The target bottle, indicated by the red sphere, was
not reached, and the other bottle was incorrectly reached.

7

Phase 0 (practice):
● python image/rl/scripts/sac_experiment_s2-calibrate.py --env_name Bottle

--mode no_online --epochs 10

Phase 1:
● python image/rl/scripts/sac_experiment_s2-calibrate.py --env_name Bottle

--mode default

● Fill out “After Phase 1” in survey spreadsheet
Phase 2:

● python image/rl/scripts/sac_experiment_s2-calibrate.py --env_name Bottle
--mode no_online

● Fill out “After Phase 2” in survey spreadsheet
Phase 3:

○ python image/rl/scripts/sac_experiment_s2-calibrate.py --env_name Bottle
--mode no_door

○ Fill out “After Phase 3” in survey spreadsheet

After the experiments:
1. Make a zip file of the entire cloned repo
2. Upload the zip file, the signed consent form, and the signed gift card receipt to this Drive

folder

8

Fig. 6: Instructional document for participants in the user study

TABLE II: User Study - Subjective Evaluation

Bottle Switch

ASHA Baseline p ASHA Baseline p

The system performed the task I wanted 4.8 3.9 > .1 4.2 3.2 < .1
I felt in control 4.0 3.0 > .1 3.6 3.1 > .1
The system responded to my input...
...in the way that I expected 4.5 3.4 > .1 3.5 3.2 > .1
The system was competent at performing tasks...
...even if they weren’t the tasks I wanted 5.2 4.9 > .1 5.1 4.7 > .1
The system improved over time 4.9 3.5 < .05 3.9 3.0 > .1
I improved at using the system over time 4.0 3.2 > .1 3.9 3.7 > .1
I always looked directly at my final target...
...holding the same gaze throughout an episode 4.2 3.5 > .1 3.5 2.9 > .1
I compensated for flaws in the system...
...by changing my gaze over time 4.7 4.0 > .1 5.4 5.5 > .1

Subjective evaluations from the 12 participants in the user study. ‘Baseline’ refers to the non-adaptive baseline interface. Means reported
below for responses on a 7-point Likert scale, where 1 = Strongly Disagree, 4 = Neither Disagree nor Agree, and 7 = Strongly Agree.
p-values from a one-way repeated measures ANOVA with the presence of ASHA as a factor influencing responses. While none of the
differences shown here are statistically significant, ASHA does outperform the baseline method in terms of the objective metrics analyzed
in Section III.

Fig. 7: Error bars show standard error across the 12 participants.
The maximum number of attempts per task is 5 (see Appendix B.1).
Both performance metrics – success rate on the first attempt for each
task, and number of failed attempts per task – generally illustrate
similar gaps between ASHA and the baseline methods. However,
in the bottle domain, while ASHA achieves a higher success rate
than the random-latent baseline, it does not achieve a lower number
of failed attempts. This can be attributed to selection effects for
difficult tasks in subsequent attempts – see Figure 9 for details.

Fig. 8: Error bars show standard error across the 12 participants.
The maximum number of attempts per task is 5 (see Appendix
B.1). Both performance metrics – success rate on the first attempt
for each task, and number of failed attempts per task – generally
illustrate similar gaps between ASHA and the random-latent base-
line method. However, in the bottle domain, while ASHA achieves
a higher success rate than the baseline, it does not achieve a lower
number of failed attempts. This can be attributed to selection effects
for difficult tasks in subsequent attempts – see Figure 9 for details.

Fig. 9: Error bars show standard error across the 12 participants.
Performance of ASHA and the non-adaptive baseline tends to
decrease on later attempts due to selection effects: tasks in which the
user’s inputs are easy to interpret for ASHA and the non-adaptive
baseline are completed within a small number of attempts, while
tasks for which user inputs are difficult to interpret for these two
methods tend to require more attempts. Performance of the random-
latent baseline is relatively constant across attempts, since it does
not take user input, and hence difficult episodes are not selected
for in later attempts. On the first attempt, where selection effects
do not exist for any of the three methods, ASHA outperforms both
the non-adaptive and random-latent baselines.

Fig. 10: Results from the ablation experiments in Section IV-A. Error bars show standard error across 10 random seeds. The maximum
number of attempts per task is 5 (see Appendix B.1). As in Table I in Section IV-A, the results show that all the ablated variants of
ASHA perform worse than the full ASHA method, suggesting that sampling from a stochastic input encoder f inpt

θ improves exploration
(Q1), pre-training with a VIB and reusing the pre-trained latent-conditioned policy gφ speed up downstream learning (Q2, Q3), relabeling
failures makes human-in-the-loop learning more efficient (Q4), and regressing onto an optimal policy is more effective than regressing
onto sampled latents (Q5).

TABLE III: User Study - Quantitative Evaluation

Switch Bottle

Success Rate Failed Attempts Success Rate Failed Attempts

Random Latent (Baseline) 0.20± 0.02 2.7± 0.1 0.49± 0.02 1.0± 0.1
Non-Adaptive (Baseline) 0.41± 0.04 1.8± 0.2 0.65± 0.04 1.8± 0.2
ASHA (Ours) 0.52± 0.04 1.6± 0.2 0.74± 0.04 0.8± 0.2
ASHA with Task/Env. Shift (Ours) 0.43± 0.08 2.1± 0.4 0.74± 0.06 0.6± 0.2

Means measured across 50 episodes, and standard errors measured across the 12 participants. ‘Failed Attempts’ refers to the number of
failed attempts per task, for which the maximum value is 5 due to timeouts (see Appendix B.1). In the switch domain, ‘ASHA with
Task/Env. Shift’ refers to task distribution shift (see Section III-B). In the bottle domain, ‘ASHA with Task/Env. Shift’ refers to environment
shift (see Section III-C). These results show that ASHA outperforms the baselines, not just in terms of learning speed or final performance,
but also in terms of cumulative regret throughout the experiment.

TABLE IV: Ablation Experiments

Switch Bottle

Success Rate Failed Attempts Success Rate Failed Attempts

Random Latent (Baseline) 0.19± 0.02 2.8± 0.1 0.44± 0.02 1.3± 0.1
Non-Adaptive (Baseline) 0.50± 0.05 1.3± 0.2 0.53± 0.02 1.3± 0.1
ASHA (Ours) 0.83± 0.02 0.3± 0.0 0.79± 0.03 0.6± 0.2
ASHA w/ Det. Input Enc. (Q1) 0.70± 0.03 0.7± 0.1 0.73± 0.02 0.6± 0.1
ASHA w/ Det. Pre-train Enc. (Q2) 0.66± 0.06 1.0± 0.3 0.46± 0.03 2.1± 0.2
SAC from Scratch (Q3) 0.00± 0.00 5.0± 0.0 0.00± 0.00 5.0± 0.0
ASHA w/o Failure Relabeling (Q4) 0.54± 0.03 1.0± 0.1 0.55± 0.02 1.3± 0.1
ASHA w/ Latent Regression (Q5) 0.41± 0.04 1.7± 0.2 0.57± 0.02 1.1± 0.1

Means and standard errors measured across 100 episodes and 10 random seeds. See Figure 10 in the appendix for more detailed plots. As
in Table I in Section IV-A, the results show that all the ablated variants of ASHA perform worse than the full ASHA method, suggesting
that sampling from a stochastic input encoder f inpt

θ improves exploration (Q1), pre-training with a VIB and reusing the pre-trained
latent-conditioned policy gφ speed up downstream learning (Q2, Q3), relabeling failures makes human-in-the-loop learning more efficient
(Q4), and regressing onto an optimal policy is more effective than regressing onto sampled latents (Q5).

	Introduction
	Training an Assistive User Interface
	Phase 1: Autonomous Pre-Training of a Task-Conditioned Policy
	Phase 2: Human-in-the-Loop Reinforcement Learning of a User Interface
	Algorithm Summary

	User Studies
	Adapting to Distributional Shift in Gaze Inputs
	Learning to Perform the User's Desired Tasks
	Adapting to a Changing Environment

	Simulation Experiments
	Ablation Study
	Demonstration on Continuous Task Spaces
	Demonstration on Structured User Inputs

	Discussion
	Acknowledgements
	References
	Appendix
	Additional Related Work
	Implementation Details
	Timeouts
	Simulator Setup for Switch and Bottle Domains
	Representation of States, Actions, Task Specifications, and Latent Embeddings
	Recording the User's Eye Gaze
	Network Architecture and Optimization
	Pre-Training Tasks
	Episode Termination and User Feedback
	Calibration Videos
	Simulated User Model Parameters
	Valve Rotation Experiment Details
	Puck Pushing Experiment Details

	Details of User Study
	Experiment Design
	Subjective Evaluations and Additional Quantitative Results

